Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrbas Structured version   Visualization version   GIF version

Theorem resspsrbas 19236
 Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrbas (𝜑𝐵 = (Base‘𝑃))

Proof of Theorem resspsrbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . . . 5 (Base‘𝑅) ∈ V
2 resspsr.2 . . . . . . . 8 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 resspsr.h . . . . . . . . 9 𝐻 = (𝑅s 𝑇)
43subrgbas 18612 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
52, 4syl 17 . . . . . . 7 (𝜑𝑇 = (Base‘𝐻))
6 eqid 2610 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
76subrgss 18604 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
82, 7syl 17 . . . . . . 7 (𝜑𝑇 ⊆ (Base‘𝑅))
95, 8eqsstr3d 3603 . . . . . 6 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
109adantr 480 . . . . 5 ((𝜑𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅))
11 mapss 7786 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
121, 10, 11sylancr 694 . . . 4 ((𝜑𝐼 ∈ V) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
13 resspsr.u . . . . 5 𝑈 = (𝐼 mPwSer 𝐻)
14 eqid 2610 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
15 eqid 2610 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
16 resspsr.b . . . . 5 𝐵 = (Base‘𝑈)
17 simpr 476 . . . . 5 ((𝜑𝐼 ∈ V) → 𝐼 ∈ V)
1813, 14, 15, 16, 17psrbas 19199 . . . 4 ((𝜑𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
19 resspsr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
20 eqid 2610 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
2119, 6, 15, 20, 17psrbas 19199 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 18, 213sstr4d 3611 . . 3 ((𝜑𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
23 reldmpsr 19182 . . . . . . . . 9 Rel dom mPwSer
2423ovprc1 6582 . . . . . . . 8 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅)
2513, 24syl5eq 2656 . . . . . . 7 𝐼 ∈ V → 𝑈 = ∅)
2625adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅)
2726fveq2d 6107 . . . . 5 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅))
28 base0 15740 . . . . 5 ∅ = (Base‘∅)
2927, 16, 283eqtr4g 2669 . . . 4 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅)
30 0ss 3924 . . . 4 ∅ ⊆ (Base‘𝑆)
3129, 30syl6eqss 3618 . . 3 ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆))
3222, 31pm2.61dan 828 . 2 (𝜑𝐵 ⊆ (Base‘𝑆))
33 resspsr.p . . 3 𝑃 = (𝑆s 𝐵)
3433, 20ressbas2 15758 . 2 (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃))
3532, 34syl 17 1 (𝜑𝐵 = (Base‘𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ◡ccnv 5037   “ cima 5041  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695   ↾s cress 15696  SubRingcsubrg 18599   mPwSer cmps 19172 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-subg 17414  df-ring 18372  df-subrg 18601  df-psr 19177 This theorem is referenced by:  resspsrvsca  19239  subrgpsr  19240
 Copyright terms: Public domain W3C validator