Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressprs Structured version   Visualization version   GIF version

Theorem ressprs 28986
Description: The restriction of a preordered set is still a preordered set. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypothesis
Ref Expression
ressprs.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
ressprs ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Preset )

Proof of Theorem ressprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . 4 (𝐾s 𝐴) ∈ V
21a1i 11 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ V)
3 simp-4l 802 . . . . . . . 8 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐾 ∈ Preset )
4 simp-4r 803 . . . . . . . . 9 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝐴𝐵)
5 simpllr 795 . . . . . . . . 9 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
64, 5sseldd 3569 . . . . . . . 8 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐵)
73, 6jca 553 . . . . . . 7 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝐾 ∈ Preset ∧ 𝑥𝐵))
8 simplr 788 . . . . . . . 8 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐴)
94, 8sseldd 3569 . . . . . . 7 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑦𝐵)
10 simpr 476 . . . . . . . 8 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐴)
114, 10sseldd 3569 . . . . . . 7 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → 𝑧𝐵)
12 ressprs.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
13 eqid 2610 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
1412, 13isprs 16753 . . . . . . . . . . 11 (𝐾 ∈ Preset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
1514simprbi 479 . . . . . . . . . 10 (𝐾 ∈ Preset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1615r19.21bi 2916 . . . . . . . . 9 ((𝐾 ∈ Preset ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1716r19.21bi 2916 . . . . . . . 8 (((𝐾 ∈ Preset ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ∀𝑧𝐵 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
1817r19.21bi 2916 . . . . . . 7 ((((𝐾 ∈ Preset ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑧𝐵) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
197, 9, 11, 18syl21anc 1317 . . . . . 6 (((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐴) → (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2019ralrimiva 2949 . . . . 5 ((((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2120ralrimiva 2949 . . . 4 (((𝐾 ∈ Preset ∧ 𝐴𝐵) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2221ralrimiva 2949 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
23 eqid 2610 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
2423, 12ressbas2 15758 . . . . . 6 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
2524adantl 481 . . . . 5 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
26 fvex 6113 . . . . . . . . . . . . 13 (Base‘𝐾) ∈ V
2712, 26eqeltri 2684 . . . . . . . . . . . 12 𝐵 ∈ V
2827ssex 4730 . . . . . . . . . . 11 (𝐴𝐵𝐴 ∈ V)
2923, 13ressle 15882 . . . . . . . . . . 11 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3028, 29syl 17 . . . . . . . . . 10 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3130adantl 481 . . . . . . . . 9 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3231breqd 4594 . . . . . . . 8 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑥𝑥(le‘(𝐾s 𝐴))𝑥))
3331breqd 4594 . . . . . . . . . 10 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑦𝑥(le‘(𝐾s 𝐴))𝑦))
3431breqd 4594 . . . . . . . . . 10 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝑦(le‘𝐾)𝑧𝑦(le‘(𝐾s 𝐴))𝑧))
3533, 34anbi12d 743 . . . . . . . . 9 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) ↔ (𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧)))
3631breqd 4594 . . . . . . . . 9 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝑥(le‘𝐾)𝑧𝑥(le‘(𝐾s 𝐴))𝑧))
3735, 36imbi12d 333 . . . . . . . 8 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧) ↔ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))
3832, 37anbi12d 743 . . . . . . 7 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ((𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ (𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
3925, 38raleqbidv 3129 . . . . . 6 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (∀𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4025, 39raleqbidv 3129 . . . . 5 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4125, 40raleqbidv 3129 . . . 4 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4241anbi2d 736 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (((𝐾s 𝐴) ∈ V ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧)))))
432, 22, 42mpbi2and 958 . 2 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
44 eqid 2610 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
45 eqid 2610 . . 3 (le‘(𝐾s 𝐴)) = (le‘(𝐾s 𝐴))
4644, 45isprs 16753 . 2 ((𝐾s 𝐴) ∈ Preset ↔ ((𝐾s 𝐴) ∈ V ∧ ∀𝑥 ∈ (Base‘(𝐾s 𝐴))∀𝑦 ∈ (Base‘(𝐾s 𝐴))∀𝑧 ∈ (Base‘(𝐾s 𝐴))(𝑥(le‘(𝐾s 𝐴))𝑥 ∧ ((𝑥(le‘(𝐾s 𝐴))𝑦𝑦(le‘(𝐾s 𝐴))𝑧) → 𝑥(le‘(𝐾s 𝐴))𝑧))))
4743, 46sylibr 223 1 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Preset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  lecple 15775   Preset cpreset 16749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-ple 15788  df-preset 16751
This theorem is referenced by:  prsssdm  29291  ordtrestNEW  29295  ordtrest2NEW  29297
  Copyright terms: Public domain W3C validator