Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressplusf Structured version   Visualization version   GIF version

Theorem ressplusf 28981
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
ressplusf.1 𝐵 = (Base‘𝐺)
ressplusf.2 𝐻 = (𝐺s 𝐴)
ressplusf.3 = (+g𝐺)
ressplusf.4 Fn (𝐵 × 𝐵)
ressplusf.5 𝐴𝐵
Assertion
Ref Expression
ressplusf (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))

Proof of Theorem ressplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressplusf.5 . . 3 𝐴𝐵
2 resmpt2 6656 . . 3 ((𝐴𝐵𝐴𝐵) → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦)))
31, 1, 2mp2an 704 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
4 ressplusf.4 . . . 4 Fn (𝐵 × 𝐵)
5 fnov 6666 . . . 4 ( Fn (𝐵 × 𝐵) ↔ = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)))
64, 5mpbi 219 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦))
76reseq1i 5313 . 2 ( ↾ (𝐴 × 𝐴)) = ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴))
8 ressplusf.2 . . . . 5 𝐻 = (𝐺s 𝐴)
9 ressplusf.1 . . . . 5 𝐵 = (Base‘𝐺)
108, 9ressbas2 15758 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
111, 10ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
12 ressplusf.3 . . . 4 = (+g𝐺)
13 fvex 6113 . . . . . . 7 (Base‘𝐺) ∈ V
149, 13eqeltri 2684 . . . . . 6 𝐵 ∈ V
1514, 1ssexi 4731 . . . . 5 𝐴 ∈ V
16 eqid 2610 . . . . . 6 (+g𝐺) = (+g𝐺)
178, 16ressplusg 15818 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
1815, 17ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
1912, 18eqtri 2632 . . 3 = (+g𝐻)
20 eqid 2610 . . 3 (+𝑓𝐻) = (+𝑓𝐻)
2111, 19, 20plusffval 17070 . 2 (+𝑓𝐻) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
223, 7, 213eqtr4ri 2643 1 (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   × cxp 5036  cres 5040   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  s cress 15696  +gcplusg 15768  +𝑓cplusf 17062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-plusf 17064
This theorem is referenced by:  xrge0pluscn  29314  xrge0tmdOLD  29319
  Copyright terms: Public domain W3C validator