Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqmo Structured version   Visualization version   GIF version

Theorem 2sqmo 28980
Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 24957 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Assertion
Ref Expression
2sqmo (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqmo
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . . . . . . . . 12 𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0)
2 nfre1 2988 . . . . . . . . . . . 12 𝑏𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)
31, 2nfan 1816 . . . . . . . . . . 11 𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 nfv 1830 . . . . . . . . . . 11 𝑏 𝑑 ∈ ℕ0
53, 4nfan 1816 . . . . . . . . . 10 𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0)
6 nfv 1830 . . . . . . . . . 10 𝑏 𝑐𝑑
75, 6nfan 1816 . . . . . . . . 9 𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑)
8 nfv 1830 . . . . . . . . 9 𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃
97, 8nfan 1816 . . . . . . . 8 𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)
10 simp-8l 810 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ)
11 simp-8r 811 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0)
12 simpllr 795 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0)
13 simp-7r 809 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0)
14 simp-6r 807 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0)
15 simplr 788 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎𝑏)
16 simp-5r 805 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐𝑑)
17 simpr 476 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
18 simp-4r 803 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃)
1910, 11, 12, 13, 14, 15, 16, 17, 182sqmod 28979 . . . . . . . . . . 11 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐𝑏 = 𝑑))
2019simpld 474 . . . . . . . . . 10 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐)
2120anasss 677 . . . . . . . . 9 ((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
2221adantl5r 784 . . . . . . . 8 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
23 simp-4r 803 . . . . . . . 8 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
249, 22, 23r19.29af 3058 . . . . . . 7 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐)
2524anasss 677 . . . . . 6 ((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2625r19.29an 3059 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2726expl 646 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2827ralrimiva 2949 . . 3 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2928ralrimiva 2949 . 2 (𝑃 ∈ ℙ → ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
30 breq12 4588 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎𝑏𝑐𝑑))
31 simpl 472 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑎 = 𝑐)
3231oveq1d 6564 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2))
33 simpr 476 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑏 = 𝑑)
3433oveq1d 6564 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2))
3532, 34oveq12d 6567 . . . . . 6 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2)))
3635eqeq1d 2612 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃))
3730, 36anbi12d 743 . . . 4 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3837cbvrexdva 3154 . . 3 (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3938rmo4 3366 . 2 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
4029, 39sylibr 223 1 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃*wrmo 2899   class class class wbr 4583  (class class class)co 6549   + caddc 9818  cle 9954  2c2 10947  0cn0 11169  cexp 12722  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator