Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressnm Structured version   Visualization version   GIF version

Theorem ressnm 28982
Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ressnm.1 𝐻 = (𝐺s 𝐴)
ressnm.2 𝐵 = (Base‘𝐺)
ressnm.3 0 = (0g𝐺)
ressnm.4 𝑁 = (norm‘𝐺)
Assertion
Ref Expression
ressnm ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))

Proof of Theorem ressnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressnm.1 . . . . 5 𝐻 = (𝐺s 𝐴)
2 ressnm.2 . . . . 5 𝐵 = (Base‘𝐺)
31, 2ressbas2 15758 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
433ad2ant3 1077 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝐻))
5 fvex 6113 . . . . . . . 8 (Base‘𝐺) ∈ V
62, 5eqeltri 2684 . . . . . . 7 𝐵 ∈ V
76ssex 4730 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
8 eqid 2610 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
91, 8ressds 15896 . . . . . 6 (𝐴 ∈ V → (dist‘𝐺) = (dist‘𝐻))
107, 9syl 17 . . . . 5 (𝐴𝐵 → (dist‘𝐺) = (dist‘𝐻))
11103ad2ant3 1077 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (dist‘𝐺) = (dist‘𝐻))
12 eqidd 2611 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑥 = 𝑥)
13 ressnm.3 . . . . 5 0 = (0g𝐺)
141, 2, 13ress0g 17142 . . . 4 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝐻))
1511, 12, 14oveq123d 6570 . . 3 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥(dist‘𝐺) 0 ) = (𝑥(dist‘𝐻)(0g𝐻)))
164, 15mpteq12dv 4663 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
17 ressnm.4 . . . . . 6 𝑁 = (norm‘𝐺)
1817, 2, 13, 8nmfval 22203 . . . . 5 𝑁 = (𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 ))
1918reseq1i 5313 . . . 4 (𝑁𝐴) = ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴)
20 resmpt 5369 . . . 4 (𝐴𝐵 → ((𝑥𝐵 ↦ (𝑥(dist‘𝐺) 0 )) ↾ 𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
2119, 20syl5eq 2656 . . 3 (𝐴𝐵 → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
22213ad2ant3 1077 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (𝑥𝐴 ↦ (𝑥(dist‘𝐺) 0 )))
23 eqid 2610 . . . 4 (norm‘𝐻) = (norm‘𝐻)
24 eqid 2610 . . . 4 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2610 . . . 4 (0g𝐻) = (0g𝐻)
26 eqid 2610 . . . 4 (dist‘𝐻) = (dist‘𝐻)
2723, 24, 25, 26nmfval 22203 . . 3 (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻)))
2827a1i 11 . 2 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (norm‘𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ (𝑥(dist‘𝐻)(0g𝐻))))
2916, 22, 283eqtr4d 2654 1 ((𝐺 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (𝑁𝐴) = (norm‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  cmpt 4643  cres 5040  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  distcds 15777  0gc0g 15923  Mndcmnd 17117  normcnm 22191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-ds 15791  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-nm 22197
This theorem is referenced by:  zringnm  29332  rezh  29343
  Copyright terms: Public domain W3C validator