MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrex Structured version   Visualization version   GIF version

Theorem resqrex 13839
Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrex ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem resqrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 9919 . . . . 5 0 ∈ ℝ
2 leloe 10003 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 702 . . . 4 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 elrp 11710 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
5 01sqrex 13838 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
6 rprege0 11723 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
76anim1i 590 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴))
8 anass 679 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑥↑2) = 𝐴) ↔ (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
97, 8sylib 207 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑥↑2) = 𝐴) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
109adantrl 748 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) → (𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
1110reximi2 2993 . . . . . . . 8 (∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
125, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
134, 12sylanbr 489 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
1413exp31 628 . . . . 5 (𝐴 ∈ ℝ → (0 < 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
15 sq0 12817 . . . . . . . . . 10 (0↑2) = 0
16 id 22 . . . . . . . . . 10 (0 = 𝐴 → 0 = 𝐴)
1715, 16syl5eq 2656 . . . . . . . . 9 (0 = 𝐴 → (0↑2) = 𝐴)
18 0le0 10987 . . . . . . . . 9 0 ≤ 0
1917, 18jctil 558 . . . . . . . 8 (0 = 𝐴 → (0 ≤ 0 ∧ (0↑2) = 𝐴))
20 breq2 4587 . . . . . . . . . 10 (𝑥 = 0 → (0 ≤ 𝑥 ↔ 0 ≤ 0))
21 oveq1 6556 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥↑2) = (0↑2))
2221eqeq1d 2612 . . . . . . . . . 10 (𝑥 = 0 → ((𝑥↑2) = 𝐴 ↔ (0↑2) = 𝐴))
2320, 22anbi12d 743 . . . . . . . . 9 (𝑥 = 0 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 0 ∧ (0↑2) = 𝐴)))
2423rspcev 3282 . . . . . . . 8 ((0 ∈ ℝ ∧ (0 ≤ 0 ∧ (0↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
251, 19, 24sylancr 694 . . . . . . 7 (0 = 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
2625a1d 25 . . . . . 6 (0 = 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
2726a1i 11 . . . . 5 (𝐴 ∈ ℝ → (0 = 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
2814, 27jaod 394 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
293, 28sylbid 229 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))))
3029imp 444 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
31 0lt1 10429 . . . . . . . . . 10 0 < 1
32 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
33 ltletr 10008 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
341, 32, 33mp3an12 1406 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴))
3531, 34mpani 708 . . . . . . . . 9 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴))
3635imp 444 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
374biimpri 217 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
3836, 37syldan 486 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
3938rpreccld 11758 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ∈ ℝ+)
40 simpr 476 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
41 lerec 10785 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4232, 31, 41mpanl12 714 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4336, 42syldan 486 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 ≤ 𝐴 ↔ (1 / 𝐴) ≤ (1 / 1)))
4440, 43mpbid 221 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ (1 / 1))
45 1div1e1 10596 . . . . . . 7 (1 / 1) = 1
4644, 45syl6breq 4624 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / 𝐴) ≤ 1)
47 01sqrex 13838 . . . . . 6 (((1 / 𝐴) ∈ ℝ+ ∧ (1 / 𝐴) ≤ 1) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
4839, 46, 47syl2anc 691 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)))
49 rpre 11715 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
50493ad2ant2 1076 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 𝑦 ∈ ℝ)
51 rpgt0 11720 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < 𝑦)
52513ad2ant2 1076 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 < 𝑦)
53 gt0ne0 10372 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ≠ 0)
54 rereccl 10622 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℝ)
5553, 54syldan 486 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → (1 / 𝑦) ∈ ℝ)
5650, 52, 55syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / 𝑦) ∈ ℝ)
57 recgt0 10746 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 < (1 / 𝑦))
58 ltle 10005 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
591, 58mpan 702 . . . . . . . . 9 ((1 / 𝑦) ∈ ℝ → (0 < (1 / 𝑦) → 0 ≤ (1 / 𝑦)))
6055, 57, 59sylc 63 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 0 ≤ (1 / 𝑦))
6150, 52, 60syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → 0 ≤ (1 / 𝑦))
62 recn 9905 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6362adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → 𝑦 ∈ ℂ)
6463, 53sqrecd 12874 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 < 𝑦) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
6550, 52, 64syl2anc 691 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = (1 / (𝑦↑2)))
66 simp3r 1083 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (𝑦↑2) = (1 / 𝐴))
6766oveq2d 6565 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (𝑦↑2)) = (1 / (1 / 𝐴)))
68 gt0ne0 10372 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6936, 68syldan 486 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ≠ 0)
70 recn 9905 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
71 recrec 10601 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
7270, 71sylan 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
7369, 72syldan 486 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
74733ad2ant1 1075 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → (1 / (1 / 𝐴)) = 𝐴)
7565, 67, 743eqtrd 2648 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ((1 / 𝑦)↑2) = 𝐴)
76 breq2 4587 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (1 / 𝑦)))
77 oveq1 6556 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (𝑥↑2) = ((1 / 𝑦)↑2))
7877eqeq1d 2612 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → ((𝑥↑2) = 𝐴 ↔ ((1 / 𝑦)↑2) = 𝐴))
7976, 78anbi12d 743 . . . . . . . 8 (𝑥 = (1 / 𝑦) → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)))
8079rspcev 3282 . . . . . . 7 (((1 / 𝑦) ∈ ℝ ∧ (0 ≤ (1 / 𝑦) ∧ ((1 / 𝑦)↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8156, 61, 75, 80syl12anc 1316 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℝ+ ∧ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8281rexlimdv3a 3015 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑦 ∈ ℝ+ (𝑦 ≤ 1 ∧ (𝑦↑2) = (1 / 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8348, 82mpd 15 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
8483ex 449 . . 3 (𝐴 ∈ ℝ → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
8584adantr 480 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1 ≤ 𝐴 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)))
86 simpl 472 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
87 letric 10016 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8886, 32, 87sylancl 693 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≤ 1 ∨ 1 ≤ 𝐴))
8930, 85, 88mpjaod 395 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  +crp 11708  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723
This theorem is referenced by:  resqreu  13841  resqrtcl  13842
  Copyright terms: Public domain W3C validator