MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Structured version   Visualization version   GIF version

Theorem sqrmo 13840
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1096 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = 𝐴)
2 simprr1 1102 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦↑2) = 𝐴)
31, 2eqtr4d 2647 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥↑2) = (𝑦↑2))
4 sqeqor 12840 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
54ad2ant2r 779 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ((𝑥↑2) = (𝑦↑2) ↔ (𝑥 = 𝑦𝑥 = -𝑦)))
63, 5mpbid 221 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = 𝑦𝑥 = -𝑦))
76ord 391 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑥 = -𝑦))
8 3simpc 1053 . . . . . . . . . . 11 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
9 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (ℜ‘𝑥) = (ℜ‘-𝑦))
109breq2d 4595 . . . . . . . . . . . 12 (𝑥 = -𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘-𝑦)))
11 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = -𝑦 → (i · 𝑥) = (i · -𝑦))
12 neleq1 2888 . . . . . . . . . . . . 13 ((i · 𝑥) = (i · -𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1311, 12syl 17 . . . . . . . . . . . 12 (𝑥 = -𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · -𝑦) ∉ ℝ+))
1410, 13anbi12d 743 . . . . . . . . . . 11 (𝑥 = -𝑦 → ((0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
158, 14syl5ibcom 234 . . . . . . . . . 10 (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
1615ad2antlr 759 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑥 = -𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
177, 16syld 46 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
18 negeq 10152 . . . . . . . . . . . . . . 15 (𝑦 = 0 → -𝑦 = -0)
19 neg0 10206 . . . . . . . . . . . . . . 15 -0 = 0
2018, 19syl6eq 2660 . . . . . . . . . . . . . 14 (𝑦 = 0 → -𝑦 = 0)
2120eqeq2d 2620 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 0))
22 eqeq2 2621 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2321, 22bitr4d 270 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑥 = -𝑦𝑥 = 𝑦))
2423biimpcd 238 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝑦 = 0 → 𝑥 = 𝑦))
2524necon3bd 2796 . . . . . . . . . 10 (𝑥 = -𝑦 → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
267, 25syli 38 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦𝑦 ≠ 0))
27 3simpc 1053 . . . . . . . . . . . 12 (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → (0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))
28 cnpart 13828 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
2927, 28syl5ib 233 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+) → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3029impancom 455 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3130adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (𝑦 ≠ 0 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3226, 31syld 46 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → (¬ 𝑥 = 𝑦 → ¬ (0 ≤ (ℜ‘-𝑦) ∧ (i · -𝑦) ∉ ℝ+)))
3317, 32pm2.65d 186 . . . . . . 7 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → ¬ ¬ 𝑥 = 𝑦)
3433notnotrd 127 . . . . . 6 (((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∧ (𝑦 ∈ ℂ ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3534an4s 865 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+))) → 𝑥 = 𝑦)
3635ex 449 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
3736a1i 11 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦)))
3837ralrimivv 2953 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
39 oveq1 6556 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
4039eqeq1d 2612 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
41 fveq2 6103 . . . . 5 (𝑥 = 𝑦 → (ℜ‘𝑥) = (ℜ‘𝑦))
4241breq2d 4595 . . . 4 (𝑥 = 𝑦 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝑦)))
43 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
44 neleq1 2888 . . . . 5 ((i · 𝑥) = (i · 𝑦) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4543, 44syl 17 . . . 4 (𝑥 = 𝑦 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝑦) ∉ ℝ+))
4640, 42, 453anbi123d 1391 . . 3 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
4746rmo4 3366 . 2 (∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)) → 𝑥 = 𝑦))
4838, 47sylibr 223 1 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  ∃*wrmo 2899   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  ici 9817   · cmul 9820  cle 9954  -cneg 10146  2c2 10947  +crp 11708  cexp 12722  cre 13685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689
This theorem is referenced by:  resqreu  13841  sqrtneg  13856  sqreu  13948
  Copyright terms: Public domain W3C validator