Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   GIF version

Theorem rencldnfilem 36402
Description: Lemma for rencldnfi 36403. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem rencldnfilem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2614 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎 = (abs‘(𝑏𝐵)) ↔ 𝑐 = (abs‘(𝑏𝐵))))
21rexbidv 3034 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
32elrab 3331 . . . . . . . . . . 11 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ (𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
4 simp-4l 802 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐴 ⊆ ℝ)
5 simpr 476 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏𝐴)
64, 5sseldd 3569 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℝ)
76recnd 9947 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℂ)
8 simp-4r 803 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℝ)
98recnd 9947 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 10271 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ∈ ℂ)
11 simprr 792 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ¬ 𝐵𝐴)
1211ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝐵𝐴)
13 nelneq 2712 . . . . . . . . . . . . . . . . 17 ((𝑏𝐴 ∧ ¬ 𝐵𝐴) → ¬ 𝑏 = 𝐵)
145, 12, 13syl2anc 691 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝑏 = 𝐵)
15 subeq0 10186 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) = 0 ↔ 𝑏 = 𝐵))
1615necon3abid 2818 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
177, 9, 16syl2anc 691 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
1814, 17mpbird 246 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ≠ 0)
1910, 18absrpcld 14035 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (abs‘(𝑏𝐵)) ∈ ℝ+)
20 eleq1 2676 . . . . . . . . . . . . . 14 (𝑐 = (abs‘(𝑏𝐵)) → (𝑐 ∈ ℝ+ ↔ (abs‘(𝑏𝐵)) ∈ ℝ+))
2119, 20syl5ibrcom 236 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2221rexlimdva 3013 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) → (∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2322expimpd 627 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ((𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))) → 𝑐 ∈ ℝ+))
243, 23syl5bi 231 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ+))
2524ssrdv 3574 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
2625adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
27 abrexfi 8149 . . . . . . . . . . 11 (𝐴 ∈ Fin → {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
28 rabssab 3652 . . . . . . . . . . 11 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
29 ssfi 8065 . . . . . . . . . . 11 (({𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3027, 28, 29sylancl 693 . . . . . . . . . 10 (𝐴 ∈ Fin → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3130adantl 481 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
32 simplrl 796 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
33 n0 3890 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3432, 33sylib 207 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑦 𝑦𝐴)
35 simp-4l 802 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐴 ⊆ ℝ)
36 simpr 476 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦𝐴)
3735, 36sseldd 3569 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
3837recnd 9947 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
39 simp-4r 803 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
4039recnd 9947 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℂ)
4138, 40subcld 10271 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (𝑦𝐵) ∈ ℂ)
4241abscld 14023 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ ℝ)
43 eqid 2610 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))
44 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑏𝐵) = (𝑦𝐵))
4544fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (abs‘(𝑏𝐵)) = (abs‘(𝑦𝐵)))
4645eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → ((abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))))
4746rspcev 3282 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4843, 47mpan2 703 . . . . . . . . . . . . 13 (𝑦𝐴 → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4948adantl 481 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
50 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑎 = (abs‘(𝑦𝐵)) → (𝑎 = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5150rexbidv 3034 . . . . . . . . . . . . 13 (𝑎 = (abs‘(𝑦𝐵)) → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5251elrab 3331 . . . . . . . . . . . 12 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ ((abs‘(𝑦𝐵)) ∈ ℝ ∧ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5342, 49, 52sylanbrc 695 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
54 ne0i 3880 . . . . . . . . . . 11 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5553, 54syl 17 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5634, 55exlimddv 1850 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
57 ssrab2 3650 . . . . . . . . . 10 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ
5857a1i 11 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
59 gtso 9998 . . . . . . . . . 10 < Or ℝ
60 fisupcl 8258 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6159, 60mpan 702 . . . . . . . . 9 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6231, 56, 58, 61syl3anc 1318 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6326, 62sseldd 3569 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+)
6457a1i 11 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
65 soss 4977 . . . . . . . . . . . . . . . 16 ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ → ( < Or ℝ → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}))
6657, 59, 65mp2 9 . . . . . . . . . . . . . . 15 < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
6766a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
68 fisupg 8093 . . . . . . . . . . . . . 14 (( < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
6967, 31, 56, 68syl3anc 1318 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
70 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ)
71 elrabi 3328 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑑 ∈ ℝ)
72 vex 3176 . . . . . . . . . . . . . . . . . . . . . 22 𝑐 ∈ V
73 vex 3176 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
7472, 73brcnv 5227 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 < 𝑑𝑑 < 𝑐)
7574notbii 309 . . . . . . . . . . . . . . . . . . . 20 𝑐 < 𝑑 ↔ ¬ 𝑑 < 𝑐)
76 lenlt 9995 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐𝑑 ↔ ¬ 𝑑 < 𝑐))
7776biimprd 237 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑑 < 𝑐𝑐𝑑))
7875, 77syl5bi 231 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7978adantll 746 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
8071, 79sylan2 490 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → (¬ 𝑐 < 𝑑𝑐𝑑))
8180ralimdva 2945 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8281adantrd 483 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8370, 82sylan2 490 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8483reximdva 3000 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → (∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8569, 84mpd 15 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
8685adantr 480 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
87 lbinfle 10857 . . . . . . . . . . 11 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ ∧ ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑 ∧ (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8864, 86, 53, 87syl3anc 1318 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
89 df-inf 8232 . . . . . . . . . . . 12 inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
9089eqcomi 2619 . . . . . . . . . . 11 sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
9190breq1i 4590 . . . . . . . . . 10 (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9288, 91sylibr 223 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9357, 62sseldi 3566 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9493adantr 480 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9594, 42lenltd 10062 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9692, 95mpbid 221 . . . . . . . 8 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
9796ralrimiva 2949 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
98 breq2 4587 . . . . . . . . . 10 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → ((abs‘(𝑦𝐵)) < 𝑥 ↔ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9998notbid 307 . . . . . . . . 9 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
10099ralbidv 2969 . . . . . . . 8 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
101100rspcev 3282 . . . . . . 7 ((sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
10263, 97, 101syl2anc 691 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
103 ralnex 2975 . . . . . . . 8 (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
104103rexbii 3023 . . . . . . 7 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
105 rexnal 2978 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
106104, 105bitri 263 . . . . . 6 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
107102, 106sylib 207 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
108107ex 449 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
1091083impa 1251 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
110109con2d 128 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 → ¬ 𝐴 ∈ Fin))
111110imp 444 1 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874   class class class wbr 4583   Or wor 4958  ccnv 5037  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  infcinf 8230  cc 9813  cr 9814  0cc0 9815   < clt 9953  cle 9954  cmin 10145  +crp 11708  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  rencldnfi  36403
  Copyright terms: Public domain W3C validator