Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Unicode version

Theorem rencldnfilem 35371
Description: Lemma for rencldnfi 35372. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem rencldnfilem
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2433 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
a  =  ( abs `  ( b  -  B
) )  <->  c  =  ( abs `  ( b  -  B ) ) ) )
21rexbidv 2946 . . . . . . . . . . . 12  |-  ( a  =  c  ->  ( E. b  e.  A  a  =  ( abs `  ( b  -  B
) )  <->  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
32elrab 3235 . . . . . . . . . . 11  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
4 simp-4l 774 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  A  C_  RR )
5 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  A )
64, 5sseldd 3471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  RR )
76recnd 9668 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  CC )
8 simp-4r 775 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  RR )
98recnd 9668 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  CC )
107, 9subcld 9985 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  e.  CC )
11 simprr 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  -.  B  e.  A
)
1211ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  B  e.  A )
13 nelneq 2546 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  A  /\  -.  B  e.  A
)  ->  -.  b  =  B )
145, 12, 13syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  b  =  B )
15 subeq0 9899 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =  0  <-> 
b  =  B ) )
1615necon3abid 2677 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =/=  0  <->  -.  b  =  B ) )
177, 9, 16syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( (
b  -  B )  =/=  0  <->  -.  b  =  B ) )
1814, 17mpbird 235 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  =/=  0
)
1910, 18absrpcld 13488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( abs `  ( b  -  B
) )  e.  RR+ )
20 eleq1 2501 . . . . . . . . . . . . . 14  |-  ( c  =  ( abs `  (
b  -  B ) )  ->  ( c  e.  RR+  <->  ( abs `  (
b  -  B ) )  e.  RR+ )
)
2119, 20syl5ibrcom 225 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( c  =  ( abs `  (
b  -  B ) )  ->  c  e.  RR+ ) )
2221rexlimdva 2924 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  ->  ( E. b  e.  A  c  =  ( abs `  ( b  -  B ) )  ->  c  e.  RR+ ) )
2322expimpd 606 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) )  ->  c  e.  RR+ ) )
243, 23syl5bi 220 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ->  c  e.  RR+ ) )
2524ssrdv 3476 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
2625adantr 466 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
27 abrexfi 7880 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  e.  Fin )
28 rabssab 3554 . . . . . . . . . . 11  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }
29 ssfi 7798 . . . . . . . . . . 11  |-  ( ( { a  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin  /\ 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3027, 28, 29sylancl 666 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3130adantl 467 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin )
32 simplrl 768 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A  =/=  (/) )
33 n0 3777 . . . . . . . . . . 11  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
3432, 33sylib 199 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. y  y  e.  A )
35 simp-4l 774 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  A  C_  RR )
36 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  A )
3735, 36sseldd 3471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  RR )
3837recnd 9668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  CC )
39 simp-4r 775 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  RR )
4039recnd 9668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  CC )
4138, 40subcld 9985 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( y  -  B )  e.  CC )
4241abscld 13476 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  RR )
43 eqid 2429 . . . . . . . . . . . . . 14  |-  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) )
44 oveq1 6312 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
b  -  B )  =  ( y  -  B ) )
4544fveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( b  =  y  ->  ( abs `  ( b  -  B ) )  =  ( abs `  (
y  -  B ) ) )
4645eqeq2d 2443 . . . . . . . . . . . . . . 15  |-  ( b  =  y  ->  (
( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) )  <->  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) ) ) )
4746rspcev 3188 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  ( abs `  ( y  -  B ) )  =  ( abs `  (
y  -  B ) ) )  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4843, 47mpan2 675 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4948adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
50 eqeq1 2433 . . . . . . . . . . . . . 14  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( a  =  ( abs `  (
b  -  B ) )  <->  ( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) ) ) )
5150rexbidv 2946 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( E. b  e.  A  a  =  ( abs `  (
b  -  B ) )  <->  E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5251elrab 3235 . . . . . . . . . . . 12  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( ( abs `  ( y  -  B
) )  e.  RR  /\ 
E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5342, 49, 52sylanbrc 668 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
54 ne0i 3773 . . . . . . . . . . 11  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5553, 54syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5634, 55exlimddv 1773 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  =/=  (/) )
57 ssrab2 3552 . . . . . . . . . 10  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  RR
5857a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )
59 gtso 9714 . . . . . . . . . 10  |-  `'  <  Or  RR
60 fisupcl 7991 . . . . . . . . . 10  |-  ( ( `'  <  Or  RR  /\  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR ) )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6159, 60mpan 674 . . . . . . . . 9  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6231, 56, 58, 61syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
6326, 62sseldd 3471 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+ )
6457a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  C_  RR )
65 soss 4793 . . . . . . . . . . . . . . . 16  |-  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  ->  ( `'  <  Or  RR  ->  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ) )
6657, 59, 65mp2 9 . . . . . . . . . . . . . . 15  |-  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }
6766a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )
68 fisupg 7825 . . . . . . . . . . . . . 14  |-  ( ( `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
6967, 31, 56, 68syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
70 elrabi 3232 . . . . . . . . . . . . . . 15  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  c  e.  RR )
71 elrabi 3232 . . . . . . . . . . . . . . . . . 18  |-  ( d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  d  e.  RR )
72 vex 3090 . . . . . . . . . . . . . . . . . . . . . 22  |-  c  e. 
_V
73 vex 3090 . . . . . . . . . . . . . . . . . . . . . 22  |-  d  e. 
_V
7472, 73brcnv 5037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c `'  <  d  <->  d  <  c )
7574notbii 297 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  c `'  <  d  <->  -.  d  <  c )
76 lenlt 9711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( c  <_  d  <->  -.  d  <  c ) )
7776biimprd 226 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  d  < 
c  ->  c  <_  d ) )
7875, 77syl5bi 220 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
7978adantll 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8071, 79sylan2 476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8180ralimdva 2840 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  ->  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } c  <_ 
d ) )
8281adantrd 469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8370, 82sylan2 476 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> 
( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8483reximdva 2907 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  ( E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
) )
8569, 84mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
8685adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
87 lbinfle 10563 . . . . . . . . . . 11  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  /\  E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d  /\  ( abs `  (
y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
8864, 86, 53, 87syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  -> inf ( {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
89 df-inf 7963 . . . . . . . . . . . 12  |- inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )
9089eqcomi 2442 . . . . . . . . . . 11  |-  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  = inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  <  )
9190breq1i 4433 . . . . . . . . . 10  |-  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  )  <_  ( abs `  ( y  -  B ) )  <-> inf ( {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
9288, 91sylibr 215 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) ) )
9357, 62sseldi 3468 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR )
9493adantr 466 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  RR )
9594, 42lenltd 9780 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) )  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9692, 95mpbid 213 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  -.  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  ) )
9796ralrimiva 2846 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )
98 breq2 4430 . . . . . . . . . 10  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( ( abs `  ( y  -  B
) )  <  x  <->  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  ) ) )
9998notbid 295 . . . . . . . . 9  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
10099ralbidv 2871 . . . . . . . 8  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
101100rspcev 3188 . . . . . . 7  |-  ( ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+  /\  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  x
)
10263, 97, 101syl2anc 665 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x )
103 ralnex 2878 . . . . . . . 8  |-  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x  <->  -.  E. y  e.  A  ( abs `  ( y  -  B
) )  <  x
)
104103rexbii 2934 . . . . . . 7  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  E. x  e.  RR+  -. 
E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
105 rexnal 2880 . . . . . . 7  |-  ( E. x  e.  RR+  -.  E. y  e.  A  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
106104, 105bitri 252 . . . . . 6  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
107102, 106sylib 199 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
108107ex 435 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
1091083impa 1200 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
110109con2d 118 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x  ->  -.  A  e.  Fin )
)
111110imp 430 1  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1870   {cab 2414    =/= wne 2625   A.wral 2782   E.wrex 2783   {crab 2786    C_ wss 3442   (/)c0 3767   class class class wbr 4426    Or wor 4774   `'ccnv 4853   ` cfv 5601  (class class class)co 6305   Fincfn 7577   supcsup 7960  infcinf 7961   CCcc 9536   RRcr 9537   0cc0 9538    < clt 9674    <_ cle 9675    - cmin 9859   RR+crp 11302   abscabs 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-inf 7963  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278
This theorem is referenced by:  rencldnfi  35372
  Copyright terms: Public domain W3C validator