Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Unicode version

Theorem rencldnfilem 29156
Description: Lemma for rencldnfi 29157. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem rencldnfilem
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2447 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
a  =  ( abs `  ( b  -  B
) )  <->  c  =  ( abs `  ( b  -  B ) ) ) )
21rexbidv 2734 . . . . . . . . . . . 12  |-  ( a  =  c  ->  ( E. b  e.  A  a  =  ( abs `  ( b  -  B
) )  <->  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
32elrab 3115 . . . . . . . . . . 11  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
4 simp-4l 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  A  C_  RR )
5 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  A )
64, 5sseldd 3355 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  RR )
76recnd 9410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  CC )
8 simp-4r 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  RR )
98recnd 9410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  CC )
107, 9subcld 9717 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  e.  CC )
11 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  -.  B  e.  A
)
1211ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  B  e.  A )
13 nelneq 2539 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  A  /\  -.  B  e.  A
)  ->  -.  b  =  B )
145, 12, 13syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  b  =  B )
15 subeq0 9633 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =  0  <-> 
b  =  B ) )
1615necon3abid 2639 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =/=  0  <->  -.  b  =  B ) )
177, 9, 16syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( (
b  -  B )  =/=  0  <->  -.  b  =  B ) )
1814, 17mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  =/=  0
)
1910, 18absrpcld 12932 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( abs `  ( b  -  B
) )  e.  RR+ )
20 eleq1 2501 . . . . . . . . . . . . . 14  |-  ( c  =  ( abs `  (
b  -  B ) )  ->  ( c  e.  RR+  <->  ( abs `  (
b  -  B ) )  e.  RR+ )
)
2119, 20syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( c  =  ( abs `  (
b  -  B ) )  ->  c  e.  RR+ ) )
2221rexlimdva 2839 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  ->  ( E. b  e.  A  c  =  ( abs `  ( b  -  B ) )  ->  c  e.  RR+ ) )
2322expimpd 603 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) )  ->  c  e.  RR+ ) )
243, 23syl5bi 217 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ->  c  e.  RR+ ) )
2524ssrdv 3360 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
2625adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
27 abrexfi 7609 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  e.  Fin )
28 rabssab 3437 . . . . . . . . . . 11  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }
29 ssfi 7531 . . . . . . . . . . 11  |-  ( ( { a  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin  /\ 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3027, 28, 29sylancl 662 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3130adantl 466 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin )
32 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A  =/=  (/) )
33 n0 3644 . . . . . . . . . . 11  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
3432, 33sylib 196 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. y  y  e.  A )
35 simp-4l 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  A  C_  RR )
36 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  A )
3735, 36sseldd 3355 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  RR )
3837recnd 9410 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  CC )
39 simp-4r 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  RR )
4039recnd 9410 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  CC )
4138, 40subcld 9717 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( y  -  B )  e.  CC )
4241abscld 12920 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  RR )
43 eqid 2441 . . . . . . . . . . . . . 14  |-  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) )
44 oveq1 6096 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
b  -  B )  =  ( y  -  B ) )
4544fveq2d 5693 . . . . . . . . . . . . . . . 16  |-  ( b  =  y  ->  ( abs `  ( b  -  B ) )  =  ( abs `  (
y  -  B ) ) )
4645eqeq2d 2452 . . . . . . . . . . . . . . 15  |-  ( b  =  y  ->  (
( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) )  <->  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) ) ) )
4746rspcev 3071 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  ( abs `  ( y  -  B ) )  =  ( abs `  (
y  -  B ) ) )  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4843, 47mpan2 671 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4948adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
50 eqeq1 2447 . . . . . . . . . . . . . 14  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( a  =  ( abs `  (
b  -  B ) )  <->  ( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) ) ) )
5150rexbidv 2734 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( E. b  e.  A  a  =  ( abs `  (
b  -  B ) )  <->  E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5251elrab 3115 . . . . . . . . . . . 12  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( ( abs `  ( y  -  B
) )  e.  RR  /\ 
E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5342, 49, 52sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
54 ne0i 3641 . . . . . . . . . . 11  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5634, 55exlimddv 1692 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  =/=  (/) )
57 ssrab2 3435 . . . . . . . . . 10  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  RR
5857a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )
59 ltso 9453 . . . . . . . . . . 11  |-  <  Or  RR
60 cnvso 5374 . . . . . . . . . . 11  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
6159, 60mpbi 208 . . . . . . . . . 10  |-  `'  <  Or  RR
62 fisupcl 7715 . . . . . . . . . 10  |-  ( ( `'  <  Or  RR  /\  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR ) )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6361, 62mpan 670 . . . . . . . . 9  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6431, 56, 58, 63syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
6526, 64sseldd 3355 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+ )
6657a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  C_  RR )
67 soss 4657 . . . . . . . . . . . . . . 15  |-  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  ->  ( `'  <  Or  RR  ->  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ) )
6857, 61, 67mp2 9 . . . . . . . . . . . . . 14  |-  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }
6968a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )
70 fisupg 7558 . . . . . . . . . . . . 13  |-  ( ( `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
7169, 31, 56, 70syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
72 elrabi 3112 . . . . . . . . . . . . . 14  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  c  e.  RR )
73 elrabi 3112 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  d  e.  RR )
74 vex 2973 . . . . . . . . . . . . . . . . . . . . 21  |-  c  e. 
_V
75 vex 2973 . . . . . . . . . . . . . . . . . . . . 21  |-  d  e. 
_V
7674, 75brcnv 5020 . . . . . . . . . . . . . . . . . . . 20  |-  ( c `'  <  d  <->  d  <  c )
7776notbii 296 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  c `'  <  d  <->  -.  d  <  c )
78 lenlt 9451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( c  <_  d  <->  -.  d  <  c ) )
7978biimprd 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  d  < 
c  ->  c  <_  d ) )
8077, 79syl5bi 217 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8180adantll 713 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8273, 81sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8382ralimdva 2792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  ->  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } c  <_ 
d ) )
8483adantrd 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8572, 84sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> 
( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8685reximdva 2826 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  ( E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
) )
8771, 86mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
8887adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
89 lbinfmle 10283 . . . . . . . . . 10  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  /\  E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d  /\  ( abs `  (
y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  )  <_  ( abs `  ( y  -  B ) ) )
9066, 88, 53, 89syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) ) )
9157, 64sseldi 3352 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR )
9291adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  RR )
9392, 42lenltd 9518 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) )  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9490, 93mpbid 210 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  -.  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  ) )
9594ralrimiva 2797 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )
96 breq2 4294 . . . . . . . . . 10  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( ( abs `  ( y  -  B
) )  <  x  <->  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  ) ) )
9796notbid 294 . . . . . . . . 9  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9897ralbidv 2733 . . . . . . . 8  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9998rspcev 3071 . . . . . . 7  |-  ( ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+  /\  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  x
)
10065, 95, 99syl2anc 661 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x )
101 ralnex 2723 . . . . . . . 8  |-  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x  <->  -.  E. y  e.  A  ( abs `  ( y  -  B
) )  <  x
)
102101rexbii 2738 . . . . . . 7  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  E. x  e.  RR+  -. 
E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
103 rexnal 2724 . . . . . . 7  |-  ( E. x  e.  RR+  -.  E. y  e.  A  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
104102, 103bitri 249 . . . . . 6  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
105100, 104sylib 196 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
106105ex 434 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
1071063impa 1182 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
108107con2d 115 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x  ->  -.  A  e.  Fin )
)
109108imp 429 1  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    C_ wss 3326   (/)c0 3635   class class class wbr 4290    Or wor 4638   `'ccnv 4837   ` cfv 5416  (class class class)co 6089   Fincfn 7308   supcsup 7688   CCcc 9278   RRcr 9279   0cc0 9280    < clt 9416    <_ cle 9417    - cmin 9593   RR+crp 10989   abscabs 12721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-rp 10990  df-seq 11805  df-exp 11864  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723
This theorem is referenced by:  rencldnfi  29157
  Copyright terms: Public domain W3C validator