Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Visualization version   GIF version

Theorem fiphp3d 36401
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a (𝜑𝐴 ≈ ℕ)
fiphp3d.b (𝜑𝐵 ∈ Fin)
fiphp3d.c ((𝜑𝑥𝐴) → 𝐷𝐵)
Assertion
Ref Expression
fiphp3d (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑦,𝐷
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 8057 . . . . 5 ¬ ω ∈ Fin
2 fiphp3d.c . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐷𝐵)
3 risset 3044 . . . . . . . . . . . 12 (𝐷𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝐷)
4 eqcom 2617 . . . . . . . . . . . . 13 (𝑦 = 𝐷𝐷 = 𝑦)
54rexbii 3023 . . . . . . . . . . . 12 (∃𝑦𝐵 𝑦 = 𝐷 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
63, 5bitri 263 . . . . . . . . . . 11 (𝐷𝐵 ↔ ∃𝑦𝐵 𝐷 = 𝑦)
72, 6sylib 207 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝐷 = 𝑦)
87ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
9 rabid2 3096 . . . . . . . . 9 (𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦} ↔ ∀𝑥𝐴𝑦𝐵 𝐷 = 𝑦)
108, 9sylibr 223 . . . . . . . 8 (𝜑𝐴 = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦})
11 iunrab 4503 . . . . . . . 8 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝐷 = 𝑦}
1210, 11syl6reqr 2663 . . . . . . 7 (𝜑 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} = 𝐴)
1312eleq1d 2672 . . . . . 6 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ 𝐴 ∈ Fin))
14 fiphp3d.a . . . . . . . 8 (𝜑𝐴 ≈ ℕ)
15 nnenom 12641 . . . . . . . 8 ℕ ≈ ω
16 entr 7894 . . . . . . . 8 ((𝐴 ≈ ℕ ∧ ℕ ≈ ω) → 𝐴 ≈ ω)
1714, 15, 16sylancl 693 . . . . . . 7 (𝜑𝐴 ≈ ω)
18 enfi 8061 . . . . . . 7 (𝐴 ≈ ω → (𝐴 ∈ Fin ↔ ω ∈ Fin))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ Fin ↔ ω ∈ Fin))
2013, 19bitrd 267 . . . . 5 (𝜑 → ( 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ω ∈ Fin))
211, 20mtbiri 316 . . . 4 (𝜑 → ¬ 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
22 fiphp3d.b . . . . 5 (𝜑𝐵 ∈ Fin)
23 iunfi 8137 . . . . 5 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2422, 23sylan 487 . . . 4 ((𝜑 ∧ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → 𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2521, 24mtand 689 . . 3 (𝜑 → ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
26 rexnal 2978 . . 3 (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin ↔ ¬ ∀𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2725, 26sylibr 223 . 2 (𝜑 → ∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)
2817, 15jctir 559 . . . . 5 (𝜑 → (𝐴 ≈ ω ∧ ℕ ≈ ω))
29 ssrab2 3650 . . . . . 6 {𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴
3029jctl 562 . . . . 5 (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin))
31 ctbnfien 36400 . . . . 5 (((𝐴 ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑥𝐴𝐷 = 𝑦} ⊆ 𝐴 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin)) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3228, 30, 31syl2an 493 . . . 4 ((𝜑 ∧ ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin) → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
3332ex 449 . . 3 (𝜑 → (¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3433reximdv 2999 . 2 (𝜑 → (∃𝑦𝐵 ¬ {𝑥𝐴𝐷 = 𝑦} ∈ Fin → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ))
3527, 34mpd 15 1 (𝜑 → ∃𝑦𝐵 {𝑥𝐴𝐷 = 𝑦} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  wss 3540   ciun 4455   class class class wbr 4583  ωcom 6957  cen 7838  Fincfn 7841  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564
This theorem is referenced by:  pellexlem5  36415
  Copyright terms: Public domain W3C validator