Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiphp3d Structured version   Unicode version

Theorem fiphp3d 29111
Description: Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Hypotheses
Ref Expression
fiphp3d.a  |-  ( ph  ->  A  ~~  NN )
fiphp3d.b  |-  ( ph  ->  B  e.  Fin )
fiphp3d.c  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  B )
Assertion
Ref Expression
fiphp3d  |-  ( ph  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN )
Distinct variable groups:    x, A, y    ph, x, y    x, B, y    y, D
Allowed substitution hint:    D( x)

Proof of Theorem fiphp3d
StepHypRef Expression
1 ominf 7517 . . . . 5  |-  -.  om  e.  Fin
2 fiphp3d.c . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  B )
3 risset 2758 . . . . . . . . . . . 12  |-  ( D  e.  B  <->  E. y  e.  B  y  =  D )
4 eqcom 2440 . . . . . . . . . . . . 13  |-  ( y  =  D  <->  D  =  y )
54rexbii 2735 . . . . . . . . . . . 12  |-  ( E. y  e.  B  y  =  D  <->  E. y  e.  B  D  =  y )
63, 5bitri 249 . . . . . . . . . . 11  |-  ( D  e.  B  <->  E. y  e.  B  D  =  y )
72, 6sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  E. y  e.  B  D  =  y )
87ralrimiva 2794 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  E. y  e.  B  D  =  y )
9 rabid2 2893 . . . . . . . . 9  |-  ( A  =  { x  e.  A  |  E. y  e.  B  D  =  y }  <->  A. x  e.  A  E. y  e.  B  D  =  y )
108, 9sylibr 212 . . . . . . . 8  |-  ( ph  ->  A  =  { x  e.  A  |  E. y  e.  B  D  =  y } )
11 iunrab 4212 . . . . . . . 8  |-  U_ y  e.  B  { x  e.  A  |  D  =  y }  =  { x  e.  A  |  E. y  e.  B  D  =  y }
1210, 11syl6reqr 2489 . . . . . . 7  |-  ( ph  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  =  A )
1312eleq1d 2504 . . . . . 6  |-  ( ph  ->  ( U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin  <->  A  e.  Fin ) )
14 fiphp3d.a . . . . . . . 8  |-  ( ph  ->  A  ~~  NN )
15 nnenom 11794 . . . . . . . 8  |-  NN  ~~  om
16 entr 7353 . . . . . . . 8  |-  ( ( A  ~~  NN  /\  NN  ~~  om )  ->  A  ~~  om )
1714, 15, 16sylancl 662 . . . . . . 7  |-  ( ph  ->  A  ~~  om )
18 enfi 7521 . . . . . . 7  |-  ( A 
~~  om  ->  ( A  e.  Fin  <->  om  e.  Fin ) )
1917, 18syl 16 . . . . . 6  |-  ( ph  ->  ( A  e.  Fin  <->  om  e.  Fin ) )
2013, 19bitrd 253 . . . . 5  |-  ( ph  ->  ( U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin  <->  om  e.  Fin ) )
211, 20mtbiri 303 . . . 4  |-  ( ph  ->  -.  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
22 fiphp3d.b . . . . 5  |-  ( ph  ->  B  e.  Fin )
23 iunfi 7591 . . . . 5  |-  ( ( B  e.  Fin  /\  A. y  e.  B  {
x  e.  A  |  D  =  y }  e.  Fin )  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2422, 23sylan 471 . . . 4  |-  ( (
ph  /\  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )  ->  U_ y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2521, 24mtand 659 . . 3  |-  ( ph  ->  -.  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
26 rexnal 2721 . . 3  |-  ( E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin  <->  -.  A. y  e.  B  { x  e.  A  |  D  =  y }  e.  Fin )
2725, 26sylibr 212 . 2  |-  ( ph  ->  E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin )
2817, 15jctir 538 . . . . 5  |-  ( ph  ->  ( A  ~~  om  /\  NN  ~~  om )
)
29 ssrab2 3432 . . . . . 6  |-  { x  e.  A  |  D  =  y }  C_  A
3029jctl 541 . . . . 5  |-  ( -. 
{ x  e.  A  |  D  =  y }  e.  Fin  ->  ( { x  e.  A  |  D  =  y }  C_  A  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin ) )
31 ctbnfien 29110 . . . . 5  |-  ( ( ( A  ~~  om  /\  NN  ~~  om )  /\  ( { x  e.  A  |  D  =  y }  C_  A  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin ) )  ->  { x  e.  A  |  D  =  y }  ~~  NN )
3228, 30, 31syl2an 477 . . . 4  |-  ( (
ph  /\  -.  { x  e.  A  |  D  =  y }  e.  Fin )  ->  { x  e.  A  |  D  =  y }  ~~  NN )
3332ex 434 . . 3  |-  ( ph  ->  ( -.  { x  e.  A  |  D  =  y }  e.  Fin  ->  { x  e.  A  |  D  =  y }  ~~  NN ) )
3433reximdv 2822 . 2  |-  ( ph  ->  ( E. y  e.  B  -.  { x  e.  A  |  D  =  y }  e.  Fin  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN ) )
3527, 34mpd 15 1  |-  ( ph  ->  E. y  e.  B  { x  e.  A  |  D  =  y }  ~~  NN )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   {crab 2714    C_ wss 3323   U_ciun 4166   class class class wbr 4287   omcom 6471    ~~ cen 7299   Fincfn 7302   NNcn 10314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854
This theorem is referenced by:  pellexlem5  29127
  Copyright terms: Public domain W3C validator