Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbnfien Structured version   Visualization version   GIF version

Theorem ctbnfien 36400
 Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
ctbnfien (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)

Proof of Theorem ctbnfien
StepHypRef Expression
1 isfinite 8432 . . . . 5 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
21notbii 309 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
3 relen 7846 . . . . . . . . . . 11 Rel ≈
43brrelexi 5082 . . . . . . . . . 10 (𝑋 ≈ ω → 𝑋 ∈ V)
5 ssdomg 7887 . . . . . . . . . 10 (𝑋 ∈ V → (𝐴𝑋𝐴𝑋))
64, 5syl 17 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴𝑋))
7 domen2 7988 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
86, 7sylibd 228 . . . . . . . 8 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
98imp 444 . . . . . . 7 ((𝑋 ≈ ω ∧ 𝐴𝑋) → 𝐴 ≼ ω)
10 brdom2 7871 . . . . . . 7 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
119, 10sylib 207 . . . . . 6 ((𝑋 ≈ ω ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1211adantlr 747 . . . . 5 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1312ord 391 . . . 4 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
142, 13syl5bi 231 . . 3 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω))
1514impr 647 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω)
16 enen2 7986 . . 3 (𝑌 ≈ ω → (𝐴𝑌𝐴 ≈ ω))
1716ad2antlr 759 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴𝑌𝐴 ≈ ω))
1815, 17mpbird 246 1 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  ωcom 6957   ≈ cen 7838   ≼ cdom 7839   ≺ csdm 7840  Fincfn 7841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845 This theorem is referenced by:  fiphp3d  36401  irrapx1  36410
 Copyright terms: Public domain W3C validator