MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Visualization version   GIF version

Theorem ramub1lem1 15568
Description: Lemma for ramub1 15570. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
ramub1.d (𝜑𝐷𝑅)
ramub1.w (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
ramub1.7 (𝜑 → (𝐺𝐷) ≤ (#‘𝑊))
ramub1.8 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
ramub1.e (𝜑𝐸𝑅)
ramub1.v (𝜑𝑉𝑊)
ramub1.9 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
ramub1.s (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
Assertion
Ref Expression
ramub1lem1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Distinct variable groups:   𝑥,𝑢,𝐷   𝑦,𝑢,𝑧,𝐹,𝑥   𝑎,𝑏,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑢,𝑅,𝑥,𝑦,𝑧   𝑊,𝑎,𝑖,𝑢   𝜑,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑉,𝑎,𝑖,𝑥,𝑧   𝑢,𝐶,𝑥,𝑦,𝑧   𝑢,𝐻,𝑥,𝑦,𝑧   𝑢,𝐾,𝑥,𝑦,𝑧   𝑥,𝐸,𝑧   𝑋,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐸(𝑦,𝑢,𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑉(𝑦,𝑢,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.v . . . . . . . 8 (𝜑𝑉𝑊)
2 ramub1.w . . . . . . . 8 (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
31, 2sstrd 3578 . . . . . . 7 (𝜑𝑉 ⊆ (𝑆 ∖ {𝑋}))
43difss2d 3702 . . . . . 6 (𝜑𝑉𝑆)
5 ramub1.x . . . . . . 7 (𝜑𝑋𝑆)
65snssd 4281 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝑆)
74, 6unssd 3751 . . . . 5 (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
8 ramub1.4 . . . . . 6 (𝜑𝑆 ∈ Fin)
9 elpw2g 4754 . . . . . 6 (𝑆 ∈ Fin → ((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑉 ∪ {𝑋}) ⊆ 𝑆))
108, 9syl 17 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑉 ∪ {𝑋}) ⊆ 𝑆))
117, 10mpbird 246 . . . 4 (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
1211adantr 480 . . 3 ((𝜑𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
13 iftrue 4042 . . . . . . 7 (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
1413adantl 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
15 ramub1.9 . . . . . . 7 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
1615adantr 480 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
1714, 16eqbrtrrd 4607 . . . . 5 ((𝜑𝐸 = 𝐷) → ((𝐹𝐷) − 1) ≤ (#‘𝑉))
18 ramub1.f . . . . . . . . 9 (𝜑𝐹:𝑅⟶ℕ)
19 ramub1.d . . . . . . . . 9 (𝜑𝐷𝑅)
2018, 19ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝐹𝐷) ∈ ℕ)
2120adantr 480 . . . . . . 7 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℕ)
2221nnred 10912 . . . . . 6 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℝ)
23 1red 9934 . . . . . 6 ((𝜑𝐸 = 𝐷) → 1 ∈ ℝ)
24 ssfi 8065 . . . . . . . . 9 ((𝑆 ∈ Fin ∧ 𝑉𝑆) → 𝑉 ∈ Fin)
258, 4, 24syl2anc 691 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
26 hashcl 13009 . . . . . . . 8 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
27 nn0re 11178 . . . . . . . 8 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
2825, 26, 273syl 18 . . . . . . 7 (𝜑 → (#‘𝑉) ∈ ℝ)
2928adantr 480 . . . . . 6 ((𝜑𝐸 = 𝐷) → (#‘𝑉) ∈ ℝ)
3022, 23, 29lesubaddd 10503 . . . . 5 ((𝜑𝐸 = 𝐷) → (((𝐹𝐷) − 1) ≤ (#‘𝑉) ↔ (𝐹𝐷) ≤ ((#‘𝑉) + 1)))
3117, 30mpbid 221 . . . 4 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ≤ ((#‘𝑉) + 1))
32 fveq2 6103 . . . . 5 (𝐸 = 𝐷 → (𝐹𝐸) = (𝐹𝐷))
33 snidg 4153 . . . . . . . 8 (𝑋𝑆𝑋 ∈ {𝑋})
345, 33syl 17 . . . . . . 7 (𝜑𝑋 ∈ {𝑋})
353sseld 3567 . . . . . . . 8 (𝜑 → (𝑋𝑉𝑋 ∈ (𝑆 ∖ {𝑋})))
36 eldifn 3695 . . . . . . . 8 (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋})
3735, 36syl6 34 . . . . . . 7 (𝜑 → (𝑋𝑉 → ¬ 𝑋 ∈ {𝑋}))
3834, 37mt2d 130 . . . . . 6 (𝜑 → ¬ 𝑋𝑉)
39 hashunsng 13042 . . . . . . 7 (𝑋𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1)))
405, 39syl 17 . . . . . 6 (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1)))
4125, 38, 40mp2and 711 . . . . 5 (𝜑 → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1))
4232, 41breqan12rd 4600 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ↔ (𝐹𝐷) ≤ ((#‘𝑉) + 1)))
4331, 42mpbird 246 . . 3 ((𝜑𝐸 = 𝐷) → (𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})))
44 snfi 7923 . . . . . . 7 {𝑋} ∈ Fin
45 unfi 8112 . . . . . . 7 ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin)
4625, 44, 45sylancl 693 . . . . . 6 (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin)
47 ramub1.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4847nnnn0d 11228 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
49 ramub1.3 . . . . . . 7 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
5049hashbcval 15544 . . . . . 6 (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
5146, 48, 50syl2anc 691 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
5251adantr 480 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
53 simpl1l 1105 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
5449hashbcval 15544 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
5525, 48, 54syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
56 ramub1.s . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
5755, 56eqsstr3d 3603 . . . . . . . 8 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
5853, 57syl 17 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
59 simpr 476 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉)
60 simpl3 1059 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = 𝑀)
61 rabid 3095 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (#‘𝑥) = 𝑀))
6259, 60, 61sylanbrc 695 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
6358, 62sseldd 3569 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
64 simpl2 1058 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}))
6564elpwid 4118 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋}))
66 simpl1l 1105 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
6766, 7syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
6865, 67sstrd 3578 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥𝑆)
69 vex 3176 . . . . . . . . . . 11 𝑥 ∈ V
7069elpw 4114 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
7168, 70sylibr 223 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆)
72 simpl3 1059 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = 𝑀)
73 rabid 3095 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (#‘𝑥) = 𝑀))
7471, 72, 73sylanbrc 695 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7549hashbcval 15544 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
768, 48, 75syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7766, 76syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7874, 77eleqtrrd 2691 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀))
792difss2d 3702 . . . . . . . . . . . . . . 15 (𝜑𝑊𝑆)
80 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Fin ∧ 𝑊𝑆) → 𝑊 ∈ Fin)
818, 79, 80syl2anc 691 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ Fin)
82 nnm1nn0 11211 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
8347, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8449hashbcval 15544 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
8581, 83, 84syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
86 ramub1.8 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
8785, 86eqsstr3d 3603 . . . . . . . . . . . 12 (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
8866, 87syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
89 uncom 3719 . . . . . . . . . . . . . . . 16 (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉)
9065, 89syl6sseq 3614 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉))
91 ssundif 4004 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9290, 91sylib 207 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9366, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉𝑊)
9492, 93sstrd 3578 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊)
95 difexg 4735 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∖ {𝑋}) ∈ V)
9669, 95ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∖ {𝑋}) ∈ V
9796elpw 4114 . . . . . . . . . . . . 13 ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9894, 97sylibr 223 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊)
9966, 8syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin)
100 ssfi 8065 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Fin ∧ 𝑥𝑆) → 𝑥 ∈ Fin)
10199, 68, 100syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin)
102 diffi 8077 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin)
103101, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin)
104 hashcl 13009 . . . . . . . . . . . . . . 15 ((𝑥 ∖ {𝑋}) ∈ Fin → (#‘(𝑥 ∖ {𝑋})) ∈ ℕ0)
105 nn0cn 11179 . . . . . . . . . . . . . . 15 ((#‘(𝑥 ∖ {𝑋})) ∈ ℕ0 → (#‘(𝑥 ∖ {𝑋})) ∈ ℂ)
106103, 104, 1053syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘(𝑥 ∖ {𝑋})) ∈ ℂ)
107 ax-1cn 9873 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 pncan 10166 . . . . . . . . . . . . . 14 (((#‘(𝑥 ∖ {𝑋})) ∈ ℂ ∧ 1 ∈ ℂ) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (#‘(𝑥 ∖ {𝑋})))
109106, 107, 108sylancl 693 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (#‘(𝑥 ∖ {𝑋})))
110 neldifsnd 4263 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋}))
111 hashunsng 13042 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1)))
11266, 5, 1113syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1)))
113103, 110, 112mp2and 711 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1))
114 undif1 3995 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋})
115 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉)
11664, 115eldifd 3551 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉))
117 elpwunsn 4171 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋𝑥)
118116, 117syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋𝑥)
119118snssd 4281 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥)
120 ssequn2 3748 . . . . . . . . . . . . . . . . . . 19 ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥)
121119, 120sylib 207 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥)
122114, 121syl5req 2657 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
123122fveq2d 6107 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
124123, 72eqtr3d 2646 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀)
125113, 124eqtr3d 2646 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((#‘(𝑥 ∖ {𝑋})) + 1) = 𝑀)
126125oveq1d 6564 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1))
127109, 126eqtr3d 2646 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))
128 fveq2 6103 . . . . . . . . . . . . . 14 (𝑢 = (𝑥 ∖ {𝑋}) → (#‘𝑢) = (#‘(𝑥 ∖ {𝑋})))
129128eqeq1d 2612 . . . . . . . . . . . . 13 (𝑢 = (𝑥 ∖ {𝑋}) → ((#‘𝑢) = (𝑀 − 1) ↔ (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
130129elrab 3331 . . . . . . . . . . . 12 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ↔ ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ∧ (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
13198, 127, 130sylanbrc 695 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
13288, 131sseldd 3569 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (𝐻 “ {𝐷}))
133 ramub1.h . . . . . . . . . . . 12 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
134133mptiniseg 5546 . . . . . . . . . . 11 (𝐷𝑅 → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
13566, 19, 1343syl 18 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
136132, 135eleqtrd 2690 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
137 uneq1 3722 . . . . . . . . . . . . 13 (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
138137fveq2d 6107 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → (𝐾‘(𝑢 ∪ {𝑋})) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
139138eqeq1d 2612 . . . . . . . . . . 11 (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
140139elrab 3331 . . . . . . . . . 10 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
141140simprbi 479 . . . . . . . . 9 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
142136, 141syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
143122fveq2d 6107 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
144 simpl1r 1106 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷)
145142, 143, 1443eqtr4d 2654 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = 𝐸)
146 ramub1.6 . . . . . . . . 9 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
147 ffn 5958 . . . . . . . . 9 (𝐾:(𝑆𝐶𝑀)⟶𝑅𝐾 Fn (𝑆𝐶𝑀))
148146, 147syl 17 . . . . . . . 8 (𝜑𝐾 Fn (𝑆𝐶𝑀))
149 fniniseg 6246 . . . . . . . 8 (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
15066, 148, 1493syl 18 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
15178, 145, 150mpbir2and 959 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
15263, 151pm2.61dan 828 . . . . 5 (((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) → 𝑥 ∈ (𝐾 “ {𝐸}))
153152rabssdv 3645 . . . 4 ((𝜑𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
15452, 153eqsstrd 3602 . . 3 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
155 fveq2 6103 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (#‘𝑧) = (#‘(𝑉 ∪ {𝑋})))
156155breq2d 4595 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹𝐸) ≤ (#‘𝑧) ↔ (𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋}))))
157 oveq1 6556 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀))
158157sseq1d 3595 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
159156, 158anbi12d 743 . . . 4 (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
160159rspcev 3282 . . 3 (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
16112, 43, 154, 160syl12anc 1316 . 2 ((𝜑𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
162 elpw2g 4754 . . . . . 6 (𝑆 ∈ Fin → (𝑉 ∈ 𝒫 𝑆𝑉𝑆))
1638, 162syl 17 . . . . 5 (𝜑 → (𝑉 ∈ 𝒫 𝑆𝑉𝑆))
1644, 163mpbird 246 . . . 4 (𝜑𝑉 ∈ 𝒫 𝑆)
165164adantr 480 . . 3 ((𝜑𝐸𝐷) → 𝑉 ∈ 𝒫 𝑆)
166 ifnefalse 4048 . . . . 5 (𝐸𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
167166adantl 481 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
16815adantr 480 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
169167, 168eqbrtrrd 4607 . . 3 ((𝜑𝐸𝐷) → (𝐹𝐸) ≤ (#‘𝑉))
17056adantr 480 . . 3 ((𝜑𝐸𝐷) → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
171 fveq2 6103 . . . . . 6 (𝑧 = 𝑉 → (#‘𝑧) = (#‘𝑉))
172171breq2d 4595 . . . . 5 (𝑧 = 𝑉 → ((𝐹𝐸) ≤ (#‘𝑧) ↔ (𝐹𝐸) ≤ (#‘𝑉)))
173 oveq1 6556 . . . . . 6 (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀))
174173sseq1d 3595 . . . . 5 (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
175172, 174anbi12d 743 . . . 4 (𝑧 = 𝑉 → (((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (#‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
176175rspcev 3282 . . 3 ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (#‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
177165, 169, 170, 176syl12anc 1316 . 2 ((𝜑𝐸𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
178161, 177pm2.61dane 2869 1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  cc 9813  cr 9814  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cn 10897  0cn0 11169  #chash 12979   Ramsey cram 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  ramub1lem2  15569
  Copyright terms: Public domain W3C validator