MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwunsn Structured version   Visualization version   GIF version

Theorem elpwunsn 4171
Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
elpwunsn (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)

Proof of Theorem elpwunsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3550 . 2 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) ↔ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵))
2 elpwg 4116 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
3 dfss3 3558 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
42, 3syl6bb 275 . . . . . 6 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
54notbid 307 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵))
65biimpa 500 . . . 4 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ¬ ∀𝑥𝐴 𝑥𝐵)
7 rexnal 2978 . . . 4 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵)
86, 7sylibr 223 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
9 elpwi 4117 . . . . . . . . . 10 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → 𝐴 ⊆ (𝐵 ∪ {𝐶}))
10 ssel 3562 . . . . . . . . . 10 (𝐴 ⊆ (𝐵 ∪ {𝐶}) → (𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})))
11 elun 3715 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑥𝐵𝑥 ∈ {𝐶}))
12 elsni 4142 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐶} → 𝑥 = 𝐶)
1312orim2i 539 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑥 ∈ {𝐶}) → (𝑥𝐵𝑥 = 𝐶))
1413ord 391 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥 ∈ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1511, 14sylbi 206 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∪ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1615imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → (𝑥𝐴 → (¬ 𝑥𝐵𝑥 = 𝐶)))
1716impd 446 . . . . . . . . . 10 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
189, 10, 173syl 18 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
19 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2019biimpd 218 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2118, 20syl6 34 . . . . . . . 8 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥𝐴𝐶𝐴)))
2221expd 451 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥𝐴𝐶𝐴))))
2322com4r 92 . . . . . 6 (𝑥𝐴 → (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴))))
2423pm2.43b 53 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴)))
2524rexlimdv 3012 . . . 4 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (∃𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴))
2625imp 444 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ∃𝑥𝐴 ¬ 𝑥𝐵) → 𝐶𝐴)
278, 26syldan 486 . 2 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → 𝐶𝐴)
281, 27sylbi 206 1 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pw 4110  df-sn 4126
This theorem is referenced by:  pwfilem  8143  incexclem  14407  ramub1lem1  15568  ptcmplem5  21670  onsucsuccmpi  31612
  Copyright terms: Public domain W3C validator