Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem5 Structured version   Visualization version   GIF version

Theorem ptcmplem5 21670
 Description: Lemma for ptcmp 21672. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
Assertion
Ref Expression
ptcmplem5 (𝜑 → (∏t𝐹) ∈ Comp)
Distinct variable groups:   𝑘,𝑛,𝑢,𝑤,𝐴   𝑆,𝑘,𝑛,𝑢   𝜑,𝑘,𝑛,𝑢   𝑘,𝑉,𝑛,𝑢,𝑤   𝑘,𝐹,𝑛,𝑢,𝑤   𝑘,𝑋,𝑛,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)

Proof of Theorem ptcmplem5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3795 . . 3 (UFL ∩ dom card) ⊆ UFL
2 ptcmp.5 . . 3 (𝜑𝑋 ∈ (UFL ∩ dom card))
31, 2sseldi 3566 . 2 (𝜑𝑋 ∈ UFL)
4 ptcmp.1 . . . 4 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
5 ptcmp.2 . . . 4 𝑋 = X𝑛𝐴 (𝐹𝑛)
6 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
7 ptcmp.4 . . . 4 (𝜑𝐹:𝐴⟶Comp)
84, 5, 6, 7, 2ptcmplem1 21666 . . 3 (𝜑 → (𝑋 = (ran 𝑆 ∪ {𝑋}) ∧ (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋})))))
98simpld 474 . 2 (𝜑𝑋 = (ran 𝑆 ∪ {𝑋}))
108simprd 478 . 2 (𝜑 → (∏t𝐹) = (topGen‘(fi‘(ran 𝑆 ∪ {𝑋}))))
11 elpwi 4117 . . . . . 6 (𝑦 ∈ 𝒫 ran 𝑆𝑦 ⊆ ran 𝑆)
126ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐴𝑉)
137ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝐹:𝐴⟶Comp)
142ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 ∈ (UFL ∩ dom card))
15 simplrl 796 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑦 ⊆ ran 𝑆)
16 simplrr 797 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → 𝑋 = 𝑦)
17 simpr 476 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) → ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
18 imaeq2 5381 . . . . . . . . . . 11 (𝑧 = 𝑢 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
1918eleq1d 2672 . . . . . . . . . 10 (𝑧 = 𝑢 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦))
2019cbvrabv 3172 . . . . . . . . 9 {𝑧 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑧) ∈ 𝑦} = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑦}
214, 5, 12, 13, 14, 15, 16, 17, 20ptcmplem4 21669 . . . . . . . 8 ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
22 iman 439 . . . . . . . 8 (((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧) ↔ ¬ ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2321, 22mpbir 220 . . . . . . 7 ((𝜑 ∧ (𝑦 ⊆ ran 𝑆𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
2423expr 641 . . . . . 6 ((𝜑𝑦 ⊆ ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2511, 24sylan2 490 . . . . 5 ((𝜑𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
2625adantlr 747 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
27 selpw 4115 . . . . . . 7 (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ↔ 𝑦 ⊆ (ran 𝑆 ∪ {𝑋}))
28 eldif 3550 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) ↔ (𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆))
29 elpwunsn 4171 . . . . . . . 8 (𝑦 ∈ (𝒫 (ran 𝑆 ∪ {𝑋}) ∖ 𝒫 ran 𝑆) → 𝑋𝑦)
3028, 29sylbir 224 . . . . . . 7 ((𝑦 ∈ 𝒫 (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3127, 30sylanbr 489 . . . . . 6 ((𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
3231adantll 746 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → 𝑋𝑦)
33 snssi 4280 . . . . . . . . 9 (𝑋𝑦 → {𝑋} ⊆ 𝑦)
3433adantl 481 . . . . . . . 8 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ⊆ 𝑦)
35 snfi 7923 . . . . . . . . 9 {𝑋} ∈ Fin
3635a1i 11 . . . . . . . 8 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ∈ Fin)
37 elfpw 8151 . . . . . . . 8 ({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({𝑋} ⊆ 𝑦 ∧ {𝑋} ∈ Fin))
3834, 36, 37sylanbrc 695 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → {𝑋} ∈ (𝒫 𝑦 ∩ Fin))
39 unisng 4388 . . . . . . . . 9 (𝑋𝑦 {𝑋} = 𝑋)
4039eqcomd 2616 . . . . . . . 8 (𝑋𝑦𝑋 = {𝑋})
4140adantl 481 . . . . . . 7 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → 𝑋 = {𝑋})
42 unieq 4380 . . . . . . . . 9 (𝑧 = {𝑋} → 𝑧 = {𝑋})
4342eqeq2d 2620 . . . . . . . 8 (𝑧 = {𝑋} → (𝑋 = 𝑧𝑋 = {𝑋}))
4443rspcev 3282 . . . . . . 7 (({𝑋} ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑋 = {𝑋}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4538, 41, 44syl2anc 691 . . . . . 6 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
4645a1d 25 . . . . 5 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ 𝑋𝑦) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4732, 46syldan 486 . . . 4 (((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4826, 47pm2.61dan 828 . . 3 ((𝜑𝑦 ⊆ (ran 𝑆 ∪ {𝑋})) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
4948impr 647 . 2 ((𝜑 ∧ (𝑦 ⊆ (ran 𝑆 ∪ {𝑋}) ∧ 𝑋 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
503, 9, 10, 49alexsub 21659 1 (𝜑 → (∏t𝐹) ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {crab 2900   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372   ↦ cmpt 4643  ◡ccnv 5037  dom cdm 5038  ran crn 5039   “ cima 5041  ⟶wf 5800  ‘cfv 5804   ↦ cmpt2 6551  Xcixp 7794  Fincfn 7841  ficfi 8199  cardccrd 8644  topGenctg 15921  ∏tcpt 15922  Compccmp 20999  UFLcufl 21514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-wdom 8347  df-card 8648  df-acn 8651  df-topgen 15927  df-pt 15928  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cmp 21000  df-fil 21460  df-ufil 21515  df-ufl 21516  df-flim 21553  df-fcls 21555 This theorem is referenced by:  ptcmpg  21671
 Copyright terms: Public domain W3C validator