MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Structured version   Visualization version   GIF version

Theorem ramub1 15570
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
Assertion
Ref Expression
ramub1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ramub1
Dummy variables 𝑢 𝑐 𝑓 𝑠 𝑣 𝑤 𝑧 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . 2 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramub1.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11228 . 2 (𝜑𝑀 ∈ ℕ0)
4 ramub1.r . 2 (𝜑𝑅 ∈ Fin)
5 ramub1.f . . 3 (𝜑𝐹:𝑅⟶ℕ)
6 nnssnn0 11172 . . 3 ℕ ⊆ ℕ0
7 fss 5969 . . 3 ((𝐹:𝑅⟶ℕ ∧ ℕ ⊆ ℕ0) → 𝐹:𝑅⟶ℕ0)
85, 6, 7sylancl 693 . 2 (𝜑𝐹:𝑅⟶ℕ0)
9 ramub1.2 . . 3 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
10 peano2nn0 11210 . . 3 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
119, 10syl 17 . 2 (𝜑 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ0)
12 simprl 790 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
139adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
14 nn0p1nn 11209 . . . . . . 7 (((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0 → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (((𝑀 − 1) Ramsey 𝐺) + 1) ∈ ℕ)
1612, 15eqeltrd 2688 . . . . 5 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) ∈ ℕ)
1716nnnn0d 11228 . . . . . . 7 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (#‘𝑠) ∈ ℕ0)
18 vex 3176 . . . . . . . 8 𝑠 ∈ V
19 hashclb 13011 . . . . . . . 8 (𝑠 ∈ V → (𝑠 ∈ Fin ↔ (#‘𝑠) ∈ ℕ0))
2018, 19ax-mp 5 . . . . . . 7 (𝑠 ∈ Fin ↔ (#‘𝑠) ∈ ℕ0)
2117, 20sylibr 223 . . . . . 6 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ∈ Fin)
22 hashnncl 13018 . . . . . 6 (𝑠 ∈ Fin → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2321, 22syl 17 . . . . 5 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
2416, 23mpbid 221 . . . 4 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → 𝑠 ≠ ∅)
25 n0 3890 . . . 4 (𝑠 ≠ ∅ ↔ ∃𝑤 𝑤𝑠)
2624, 25sylib 207 . . 3 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑤 𝑤𝑠)
272adantr 480 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑀 ∈ ℕ)
284adantr 480 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑅 ∈ Fin)
295adantr 480 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐹:𝑅⟶ℕ)
30 ramub1.g . . . . . 6 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
31 ramub1.1 . . . . . . 7 (𝜑𝐺:𝑅⟶ℕ0)
3231adantr 480 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝐺:𝑅⟶ℕ0)
339adantr 480 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
3421adantrr 749 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑠 ∈ Fin)
35 simprll 798 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → (#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1))
36 simprlr 799 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)
37 simprr 792 . . . . . 6 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → 𝑤𝑠)
38 uneq1 3722 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 ∪ {𝑤}) = (𝑢 ∪ {𝑤}))
3938fveq2d 6107 . . . . . . 7 (𝑣 = 𝑢 → (𝑓‘(𝑣 ∪ {𝑤})) = (𝑓‘(𝑢 ∪ {𝑤})))
4039cbvmptv 4678 . . . . . 6 (𝑣 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑣 ∪ {𝑤}))) = (𝑢 ∈ ((𝑠 ∖ {𝑤})(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})(𝑀 − 1)) ↦ (𝑓‘(𝑢 ∪ {𝑤})))
4127, 28, 29, 30, 32, 33, 1, 34, 35, 36, 37, 40ramub1lem2 15569 . . . . 5 ((𝜑 ∧ (((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅) ∧ 𝑤𝑠)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
4241expr 641 . . . 4 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4342exlimdv 1848 . . 3 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → (∃𝑤 𝑤𝑠 → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4426, 43mpd 15 . 2 ((𝜑 ∧ ((#‘𝑠) = (((𝑀 − 1) Ramsey 𝐺) + 1) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶𝑅)) → ∃𝑐𝑅𝑧 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑧) ∧ (𝑧(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
451, 3, 4, 8, 11, 44ramub2 15556 1 (𝜑 → (𝑀 Ramsey 𝐹) ≤ (((𝑀 − 1) Ramsey 𝐺) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cn 10897  0cn0 11169  #chash 12979   Ramsey cram 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-ram 15543
This theorem is referenced by:  ramcl  15571
  Copyright terms: Public domain W3C validator