MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Unicode version

Theorem ramub1lem1 14556
Description: Lemma for ramub1 14558. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
ramub1.3  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramub1.4  |-  ( ph  ->  S  e.  Fin )
ramub1.5  |-  ( ph  ->  ( # `  S
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
ramub1.6  |-  ( ph  ->  K : ( S C M ) --> R )
ramub1.x  |-  ( ph  ->  X  e.  S )
ramub1.h  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
ramub1.d  |-  ( ph  ->  D  e.  R )
ramub1.w  |-  ( ph  ->  W  C_  ( S  \  { X } ) )
ramub1.7  |-  ( ph  ->  ( G `  D
)  <_  ( # `  W
) )
ramub1.8  |-  ( ph  ->  ( W C ( M  -  1 ) )  C_  ( `' H " { D }
) )
ramub1.e  |-  ( ph  ->  E  e.  R )
ramub1.v  |-  ( ph  ->  V  C_  W )
ramub1.9  |-  ( ph  ->  if ( E  =  D ,  ( ( F `  D )  -  1 ) ,  ( F `  E
) )  <_  ( # `
 V ) )
ramub1.s  |-  ( ph  ->  ( V C M )  C_  ( `' K " { E }
) )
Assertion
Ref Expression
ramub1lem1  |-  ( ph  ->  E. z  e.  ~P  S ( ( F `
 E )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { E } ) ) )
Distinct variable groups:    x, u, D    y, u, z, F, x    a, b, i, u, x, y, z, M    G, a, i, u, x, y, z    u, R, x, y, z    W, a, i, u    ph, u, x, y, z    S, a, i, u, x, y, z    V, a, i, x, z    u, C, x, y, z    u, H, x, y, z    u, K, x, y, z    x, E, z    X, a, i, u, x, y, z
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    D( y, z, i, a, b)    R( i, a, b)    S( b)    E( y, u, i, a, b)    F( i, a, b)    G( b)    H( i, a, b)    K( i, a, b)    V( y, u, b)    W( x, y, z, b)    X( b)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.v . . . . . . . 8  |-  ( ph  ->  V  C_  W )
2 ramub1.w . . . . . . . 8  |-  ( ph  ->  W  C_  ( S  \  { X } ) )
31, 2sstrd 3509 . . . . . . 7  |-  ( ph  ->  V  C_  ( S  \  { X } ) )
43difss2d 3630 . . . . . 6  |-  ( ph  ->  V  C_  S )
5 ramub1.x . . . . . . 7  |-  ( ph  ->  X  e.  S )
65snssd 4177 . . . . . 6  |-  ( ph  ->  { X }  C_  S )
74, 6unssd 3676 . . . . 5  |-  ( ph  ->  ( V  u.  { X } )  C_  S
)
8 ramub1.4 . . . . . 6  |-  ( ph  ->  S  e.  Fin )
9 elpw2g 4619 . . . . . 6  |-  ( S  e.  Fin  ->  (
( V  u.  { X } )  e.  ~P S 
<->  ( V  u.  { X } )  C_  S
) )
108, 9syl 16 . . . . 5  |-  ( ph  ->  ( ( V  u.  { X } )  e. 
~P S  <->  ( V  u.  { X } ) 
C_  S ) )
117, 10mpbird 232 . . . 4  |-  ( ph  ->  ( V  u.  { X } )  e.  ~P S )
1211adantr 465 . . 3  |-  ( (
ph  /\  E  =  D )  ->  ( V  u.  { X } )  e.  ~P S )
13 iftrue 3950 . . . . . . 7  |-  ( E  =  D  ->  if ( E  =  D ,  ( ( F `
 D )  - 
1 ) ,  ( F `  E ) )  =  ( ( F `  D )  -  1 ) )
1413adantl 466 . . . . . 6  |-  ( (
ph  /\  E  =  D )  ->  if ( E  =  D ,  ( ( F `
 D )  - 
1 ) ,  ( F `  E ) )  =  ( ( F `  D )  -  1 ) )
15 ramub1.9 . . . . . . 7  |-  ( ph  ->  if ( E  =  D ,  ( ( F `  D )  -  1 ) ,  ( F `  E
) )  <_  ( # `
 V ) )
1615adantr 465 . . . . . 6  |-  ( (
ph  /\  E  =  D )  ->  if ( E  =  D ,  ( ( F `
 D )  - 
1 ) ,  ( F `  E ) )  <_  ( # `  V
) )
1714, 16eqbrtrrd 4478 . . . . 5  |-  ( (
ph  /\  E  =  D )  ->  (
( F `  D
)  -  1 )  <_  ( # `  V
) )
18 ramub1.f . . . . . . . . 9  |-  ( ph  ->  F : R --> NN )
19 ramub1.d . . . . . . . . 9  |-  ( ph  ->  D  e.  R )
2018, 19ffvelrnd 6033 . . . . . . . 8  |-  ( ph  ->  ( F `  D
)  e.  NN )
2120adantr 465 . . . . . . 7  |-  ( (
ph  /\  E  =  D )  ->  ( F `  D )  e.  NN )
2221nnred 10571 . . . . . 6  |-  ( (
ph  /\  E  =  D )  ->  ( F `  D )  e.  RR )
23 1red 9628 . . . . . 6  |-  ( (
ph  /\  E  =  D )  ->  1  e.  RR )
24 ssfi 7759 . . . . . . . . 9  |-  ( ( S  e.  Fin  /\  V  C_  S )  ->  V  e.  Fin )
258, 4, 24syl2anc 661 . . . . . . . 8  |-  ( ph  ->  V  e.  Fin )
26 hashcl 12431 . . . . . . . 8  |-  ( V  e.  Fin  ->  ( # `
 V )  e. 
NN0 )
27 nn0re 10825 . . . . . . . 8  |-  ( (
# `  V )  e.  NN0  ->  ( # `  V
)  e.  RR )
2825, 26, 273syl 20 . . . . . . 7  |-  ( ph  ->  ( # `  V
)  e.  RR )
2928adantr 465 . . . . . 6  |-  ( (
ph  /\  E  =  D )  ->  ( # `
 V )  e.  RR )
3022, 23, 29lesubaddd 10170 . . . . 5  |-  ( (
ph  /\  E  =  D )  ->  (
( ( F `  D )  -  1 )  <_  ( # `  V
)  <->  ( F `  D )  <_  (
( # `  V )  +  1 ) ) )
3117, 30mpbid 210 . . . 4  |-  ( (
ph  /\  E  =  D )  ->  ( F `  D )  <_  ( ( # `  V
)  +  1 ) )
32 fveq2 5872 . . . . 5  |-  ( E  =  D  ->  ( F `  E )  =  ( F `  D ) )
33 snidg 4058 . . . . . . . 8  |-  ( X  e.  S  ->  X  e.  { X } )
345, 33syl 16 . . . . . . 7  |-  ( ph  ->  X  e.  { X } )
353sseld 3498 . . . . . . . 8  |-  ( ph  ->  ( X  e.  V  ->  X  e.  ( S 
\  { X }
) ) )
36 eldifn 3623 . . . . . . . 8  |-  ( X  e.  ( S  \  { X } )  ->  -.  X  e.  { X } )
3735, 36syl6 33 . . . . . . 7  |-  ( ph  ->  ( X  e.  V  ->  -.  X  e.  { X } ) )
3834, 37mt2d 117 . . . . . 6  |-  ( ph  ->  -.  X  e.  V
)
39 hashunsng 12463 . . . . . . 7  |-  ( X  e.  S  ->  (
( V  e.  Fin  /\ 
-.  X  e.  V
)  ->  ( # `  ( V  u.  { X } ) )  =  ( ( # `  V
)  +  1 ) ) )
405, 39syl 16 . . . . . 6  |-  ( ph  ->  ( ( V  e. 
Fin  /\  -.  X  e.  V )  ->  ( # `
 ( V  u.  { X } ) )  =  ( ( # `  V )  +  1 ) ) )
4125, 38, 40mp2and 679 . . . . 5  |-  ( ph  ->  ( # `  ( V  u.  { X } ) )  =  ( ( # `  V
)  +  1 ) )
4232, 41breqan12rd 4472 . . . 4  |-  ( (
ph  /\  E  =  D )  ->  (
( F `  E
)  <_  ( # `  ( V  u.  { X } ) )  <->  ( F `  D )  <_  (
( # `  V )  +  1 ) ) )
4331, 42mpbird 232 . . 3  |-  ( (
ph  /\  E  =  D )  ->  ( F `  E )  <_  ( # `  ( V  u.  { X } ) ) )
44 snfi 7615 . . . . . . 7  |-  { X }  e.  Fin
45 unfi 7805 . . . . . . 7  |-  ( ( V  e.  Fin  /\  { X }  e.  Fin )  ->  ( V  u.  { X } )  e. 
Fin )
4625, 44, 45sylancl 662 . . . . . 6  |-  ( ph  ->  ( V  u.  { X } )  e.  Fin )
47 ramub1.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
4847nnnn0d 10873 . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
49 ramub1.3 . . . . . . 7  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
5049hashbcval 14532 . . . . . 6  |-  ( ( ( V  u.  { X } )  e.  Fin  /\  M  e.  NN0 )  ->  ( ( V  u.  { X } ) C M )  =  {
x  e.  ~P ( V  u.  { X } )  |  (
# `  x )  =  M } )
5146, 48, 50syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( V  u.  { X } ) C M )  =  {
x  e.  ~P ( V  u.  { X } )  |  (
# `  x )  =  M } )
5251adantr 465 . . . 4  |-  ( (
ph  /\  E  =  D )  ->  (
( V  u.  { X } ) C M )  =  { x  e.  ~P ( V  u.  { X } )  |  ( # `  x
)  =  M }
)
53 simpl1l 1047 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  ->  ph )
5449hashbcval 14532 . . . . . . . . . 10  |-  ( ( V  e.  Fin  /\  M  e.  NN0 )  -> 
( V C M )  =  { x  e.  ~P V  |  (
# `  x )  =  M } )
5525, 48, 54syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( V C M )  =  { x  e.  ~P V  |  (
# `  x )  =  M } )
56 ramub1.s . . . . . . . . 9  |-  ( ph  ->  ( V C M )  C_  ( `' K " { E }
) )
5755, 56eqsstr3d 3534 . . . . . . . 8  |-  ( ph  ->  { x  e.  ~P V  |  ( # `  x
)  =  M }  C_  ( `' K " { E } ) )
5853, 57syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  ->  { x  e.  ~P V  |  ( # `  x
)  =  M }  C_  ( `' K " { E } ) )
59 simpr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  ->  x  e.  ~P V
)
60 simpl3 1001 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  -> 
( # `  x )  =  M )
61 rabid 3034 . . . . . . . 8  |-  ( x  e.  { x  e. 
~P V  |  (
# `  x )  =  M }  <->  ( x  e.  ~P V  /\  ( # `
 x )  =  M ) )
6259, 60, 61sylanbrc 664 . . . . . . 7  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  ->  x  e.  { x  e.  ~P V  |  (
# `  x )  =  M } )
6358, 62sseldd 3500 . . . . . 6  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  x  e.  ~P V )  ->  x  e.  ( `' K " { E }
) )
64 simpl2 1000 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  ~P ( V  u.  { X } ) )
6564elpwid 4025 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  C_  ( V  u.  { X } ) )
66 simpl1l 1047 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ph )
6766, 7syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( V  u.  { X } ) 
C_  S )
6865, 67sstrd 3509 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  C_  S
)
69 vex 3112 . . . . . . . . . . 11  |-  x  e. 
_V
7069elpw 4021 . . . . . . . . . 10  |-  ( x  e.  ~P S  <->  x  C_  S
)
7168, 70sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  ~P S )
72 simpl3 1001 . . . . . . . . 9  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  x
)  =  M )
73 rabid 3034 . . . . . . . . 9  |-  ( x  e.  { x  e. 
~P S  |  (
# `  x )  =  M }  <->  ( x  e.  ~P S  /\  ( # `
 x )  =  M ) )
7471, 72, 73sylanbrc 664 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  { x  e.  ~P S  |  ( # `  x
)  =  M }
)
7549hashbcval 14532 . . . . . . . . . 10  |-  ( ( S  e.  Fin  /\  M  e.  NN0 )  -> 
( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
768, 48, 75syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( S C M )  =  { x  e.  ~P S  |  (
# `  x )  =  M } )
7766, 76syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( S C M )  =  {
x  e.  ~P S  |  ( # `  x
)  =  M }
)
7874, 77eleqtrrd 2548 . . . . . . 7  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  ( S C M ) )
792difss2d 3630 . . . . . . . . . . . . . . 15  |-  ( ph  ->  W  C_  S )
80 ssfi 7759 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  Fin  /\  W  C_  S )  ->  W  e.  Fin )
818, 79, 80syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  W  e.  Fin )
82 nnm1nn0 10858 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
8347, 82syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
8449hashbcval 14532 . . . . . . . . . . . . . 14  |-  ( ( W  e.  Fin  /\  ( M  -  1
)  e.  NN0 )  ->  ( W C ( M  -  1 ) )  =  { u  e.  ~P W  |  (
# `  u )  =  ( M  - 
1 ) } )
8581, 83, 84syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( W C ( M  -  1 ) )  =  { u  e.  ~P W  |  (
# `  u )  =  ( M  - 
1 ) } )
86 ramub1.8 . . . . . . . . . . . . 13  |-  ( ph  ->  ( W C ( M  -  1 ) )  C_  ( `' H " { D }
) )
8785, 86eqsstr3d 3534 . . . . . . . . . . . 12  |-  ( ph  ->  { u  e.  ~P W  |  ( # `  u
)  =  ( M  -  1 ) } 
C_  ( `' H " { D } ) )
8866, 87syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  { u  e.  ~P W  |  (
# `  u )  =  ( M  - 
1 ) }  C_  ( `' H " { D } ) )
89 uncom 3644 . . . . . . . . . . . . . . . 16  |-  ( V  u.  { X }
)  =  ( { X }  u.  V
)
9065, 89syl6sseq 3545 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  C_  ( { X }  u.  V
) )
91 ssundif 3914 . . . . . . . . . . . . . . 15  |-  ( x 
C_  ( { X }  u.  V )  <->  ( x  \  { X } )  C_  V
)
9290, 91sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } ) 
C_  V )
9366, 1syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  V  C_  W
)
9492, 93sstrd 3509 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } ) 
C_  W )
95 difexg 4604 . . . . . . . . . . . . . . 15  |-  ( x  e.  _V  ->  (
x  \  { X } )  e.  _V )
9669, 95ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x 
\  { X }
)  e.  _V
9796elpw 4021 . . . . . . . . . . . . 13  |-  ( ( x  \  { X } )  e.  ~P W 
<->  ( x  \  { X } )  C_  W
)
9894, 97sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } )  e.  ~P W )
9966, 8syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  S  e.  Fin )
100 ssfi 7759 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  Fin  /\  x  C_  S )  ->  x  e.  Fin )
10199, 68, 100syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  Fin )
102 diffi 7770 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Fin  ->  (
x  \  { X } )  e.  Fin )
103101, 102syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } )  e.  Fin )
104 hashcl 12431 . . . . . . . . . . . . . . 15  |-  ( ( x  \  { X } )  e.  Fin  ->  ( # `  (
x  \  { X } ) )  e. 
NN0 )
105 nn0cn 10826 . . . . . . . . . . . . . . 15  |-  ( (
# `  ( x  \  { X } ) )  e.  NN0  ->  (
# `  ( x  \  { X } ) )  e.  CC )
106103, 104, 1053syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  (
x  \  { X } ) )  e.  CC )
107 ax-1cn 9567 . . . . . . . . . . . . . 14  |-  1  e.  CC
108 pncan 9845 . . . . . . . . . . . . . 14  |-  ( ( ( # `  (
x  \  { X } ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( # `  (
x  \  { X } ) )  +  1 )  -  1 )  =  ( # `  ( x  \  { X } ) ) )
109106, 107, 108sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( (
( # `  ( x 
\  { X }
) )  +  1 )  -  1 )  =  ( # `  (
x  \  { X } ) ) )
110 neldifsnd 4160 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  -.  X  e.  ( x  \  { X } ) )
111 hashunsng 12463 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  S  ->  (
( ( x  \  { X } )  e. 
Fin  /\  -.  X  e.  ( x  \  { X } ) )  -> 
( # `  ( ( x  \  { X } )  u.  { X } ) )  =  ( ( # `  (
x  \  { X } ) )  +  1 ) ) )
11266, 5, 1113syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( (
( x  \  { X } )  e.  Fin  /\ 
-.  X  e.  ( x  \  { X } ) )  -> 
( # `  ( ( x  \  { X } )  u.  { X } ) )  =  ( ( # `  (
x  \  { X } ) )  +  1 ) ) )
113103, 110, 112mp2and 679 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  (
( x  \  { X } )  u.  { X } ) )  =  ( ( # `  (
x  \  { X } ) )  +  1 ) )
114 undif1 3906 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  \  { X } )  u.  { X } )  =  ( x  u.  { X } )
115 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  -.  x  e.  ~P V )
11664, 115eldifd 3482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  ( ~P ( V  u.  { X } )  \  ~P V ) )
117 elpwunsn 4073 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( ~P ( V  u.  { X } )  \  ~P V )  ->  X  e.  x )
118116, 117syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  X  e.  x )
119118snssd 4177 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  { X }  C_  x )
120 ssequn2 3673 . . . . . . . . . . . . . . . . . . 19  |-  ( { X }  C_  x  <->  ( x  u.  { X } )  =  x )
121119, 120sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  u.  { X } )  =  x )
122114, 121syl5req 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  =  ( ( x  \  { X } )  u. 
{ X } ) )
123122fveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  x
)  =  ( # `  ( ( x  \  { X } )  u. 
{ X } ) ) )
124123, 72eqtr3d 2500 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  (
( x  \  { X } )  u.  { X } ) )  =  M )
125113, 124eqtr3d 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( ( # `
 ( x  \  { X } ) )  +  1 )  =  M )
126125oveq1d 6311 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( (
( # `  ( x 
\  { X }
) )  +  1 )  -  1 )  =  ( M  - 
1 ) )
127109, 126eqtr3d 2500 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( # `  (
x  \  { X } ) )  =  ( M  -  1 ) )
128 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( u  =  ( x  \  { X } )  -> 
( # `  u )  =  ( # `  (
x  \  { X } ) ) )
129128eqeq1d 2459 . . . . . . . . . . . . 13  |-  ( u  =  ( x  \  { X } )  -> 
( ( # `  u
)  =  ( M  -  1 )  <->  ( # `  (
x  \  { X } ) )  =  ( M  -  1 ) ) )
130129elrab 3257 . . . . . . . . . . . 12  |-  ( ( x  \  { X } )  e.  {
u  e.  ~P W  |  ( # `  u
)  =  ( M  -  1 ) }  <-> 
( ( x  \  { X } )  e. 
~P W  /\  ( # `
 ( x  \  { X } ) )  =  ( M  - 
1 ) ) )
13198, 127, 130sylanbrc 664 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } )  e.  { u  e. 
~P W  |  (
# `  u )  =  ( M  - 
1 ) } )
13288, 131sseldd 3500 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } )  e.  ( `' H " { D } ) )
133 ramub1.h . . . . . . . . . . . 12  |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )
134133mptiniseg 5507 . . . . . . . . . . 11  |-  ( D  e.  R  ->  ( `' H " { D } )  =  {
u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |  ( K `
 ( u  u. 
{ X } ) )  =  D }
)
13566, 19, 1343syl 20 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( `' H " { D }
)  =  { u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |  ( K `  ( u  u.  { X }
) )  =  D } )
136132, 135eleqtrd 2547 . . . . . . . . 9  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  \  { X } )  e.  { u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |  ( K `  ( u  u.  { X }
) )  =  D } )
137 uneq1 3647 . . . . . . . . . . . . 13  |-  ( u  =  ( x  \  { X } )  -> 
( u  u.  { X } )  =  ( ( x  \  { X } )  u.  { X } ) )
138137fveq2d 5876 . . . . . . . . . . . 12  |-  ( u  =  ( x  \  { X } )  -> 
( K `  (
u  u.  { X } ) )  =  ( K `  (
( x  \  { X } )  u.  { X } ) ) )
139138eqeq1d 2459 . . . . . . . . . . 11  |-  ( u  =  ( x  \  { X } )  -> 
( ( K `  ( u  u.  { X } ) )  =  D  <->  ( K `  ( ( x  \  { X } )  u. 
{ X } ) )  =  D ) )
140139elrab 3257 . . . . . . . . . 10  |-  ( ( x  \  { X } )  e.  {
u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |  ( K `
 ( u  u. 
{ X } ) )  =  D }  <->  ( ( x  \  { X } )  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  /\  ( K `
 ( ( x 
\  { X }
)  u.  { X } ) )  =  D ) )
141140simprbi 464 . . . . . . . . 9  |-  ( ( x  \  { X } )  e.  {
u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |  ( K `
 ( u  u. 
{ X } ) )  =  D }  ->  ( K `  (
( x  \  { X } )  u.  { X } ) )  =  D )
142136, 141syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( K `  ( ( x  \  { X } )  u. 
{ X } ) )  =  D )
143122fveq2d 5876 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( K `  x )  =  ( K `  ( ( x  \  { X } )  u.  { X } ) ) )
144 simpl1r 1048 . . . . . . . 8  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  E  =  D )
145142, 143, 1443eqtr4d 2508 . . . . . . 7  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( K `  x )  =  E )
146 ramub1.6 . . . . . . . . 9  |-  ( ph  ->  K : ( S C M ) --> R )
147 ffn 5737 . . . . . . . . 9  |-  ( K : ( S C M ) --> R  ->  K  Fn  ( S C M ) )
148146, 147syl 16 . . . . . . . 8  |-  ( ph  ->  K  Fn  ( S C M ) )
149 fniniseg 6009 . . . . . . . 8  |-  ( K  Fn  ( S C M )  ->  (
x  e.  ( `' K " { E } )  <->  ( x  e.  ( S C M )  /\  ( K `
 x )  =  E ) ) )
15066, 148, 1493syl 20 . . . . . . 7  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  ( x  e.  ( `' K " { E } )  <->  ( x  e.  ( S C M )  /\  ( K `
 x )  =  E ) ) )
15178, 145, 150mpbir2and 922 . . . . . 6  |-  ( ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `
 x )  =  M )  /\  -.  x  e.  ~P V
)  ->  x  e.  ( `' K " { E } ) )
15263, 151pm2.61dan 791 . . . . 5  |-  ( ( ( ph  /\  E  =  D )  /\  x  e.  ~P ( V  u.  { X } )  /\  ( # `  x )  =  M )  ->  x  e.  ( `' K " { E }
) )
153152rabssdv 3576 . . . 4  |-  ( (
ph  /\  E  =  D )  ->  { x  e.  ~P ( V  u.  { X } )  |  ( # `  x
)  =  M }  C_  ( `' K " { E } ) )
15452, 153eqsstrd 3533 . . 3  |-  ( (
ph  /\  E  =  D )  ->  (
( V  u.  { X } ) C M )  C_  ( `' K " { E }
) )
155 fveq2 5872 . . . . . 6  |-  ( z  =  ( V  u.  { X } )  -> 
( # `  z )  =  ( # `  ( V  u.  { X } ) ) )
156155breq2d 4468 . . . . 5  |-  ( z  =  ( V  u.  { X } )  -> 
( ( F `  E )  <_  ( # `
 z )  <->  ( F `  E )  <_  ( # `
 ( V  u.  { X } ) ) ) )
157 oveq1 6303 . . . . . 6  |-  ( z  =  ( V  u.  { X } )  -> 
( z C M )  =  ( ( V  u.  { X } ) C M ) )
158157sseq1d 3526 . . . . 5  |-  ( z  =  ( V  u.  { X } )  -> 
( ( z C M )  C_  ( `' K " { E } )  <->  ( ( V  u.  { X } ) C M )  C_  ( `' K " { E }
) ) )
159156, 158anbi12d 710 . . . 4  |-  ( z  =  ( V  u.  { X } )  -> 
( ( ( F `
 E )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { E } ) )  <->  ( ( F `  E )  <_  ( # `  ( V  u.  { X } ) )  /\  ( ( V  u.  { X } ) C M )  C_  ( `' K " { E } ) ) ) )
160159rspcev 3210 . . 3  |-  ( ( ( V  u.  { X } )  e.  ~P S  /\  ( ( F `
 E )  <_ 
( # `  ( V  u.  { X }
) )  /\  (
( V  u.  { X } ) C M )  C_  ( `' K " { E }
) ) )  ->  E. z  e.  ~P  S ( ( F `
 E )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { E } ) ) )
16112, 43, 154, 160syl12anc 1226 . 2  |-  ( (
ph  /\  E  =  D )  ->  E. z  e.  ~P  S ( ( F `  E )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { E } ) ) )
162 elpw2g 4619 . . . . . 6  |-  ( S  e.  Fin  ->  ( V  e.  ~P S  <->  V 
C_  S ) )
1638, 162syl 16 . . . . 5  |-  ( ph  ->  ( V  e.  ~P S 
<->  V  C_  S )
)
1644, 163mpbird 232 . . . 4  |-  ( ph  ->  V  e.  ~P S
)
165164adantr 465 . . 3  |-  ( (
ph  /\  E  =/=  D )  ->  V  e.  ~P S )
166 ifnefalse 3956 . . . . 5  |-  ( E  =/=  D  ->  if ( E  =  D ,  ( ( F `
 D )  - 
1 ) ,  ( F `  E ) )  =  ( F `
 E ) )
167166adantl 466 . . . 4  |-  ( (
ph  /\  E  =/=  D )  ->  if ( E  =  D , 
( ( F `  D )  -  1 ) ,  ( F `
 E ) )  =  ( F `  E ) )
16815adantr 465 . . . 4  |-  ( (
ph  /\  E  =/=  D )  ->  if ( E  =  D , 
( ( F `  D )  -  1 ) ,  ( F `
 E ) )  <_  ( # `  V
) )
169167, 168eqbrtrrd 4478 . . 3  |-  ( (
ph  /\  E  =/=  D )  ->  ( F `  E )  <_  ( # `
 V ) )
17056adantr 465 . . 3  |-  ( (
ph  /\  E  =/=  D )  ->  ( V C M )  C_  ( `' K " { E } ) )
171 fveq2 5872 . . . . . 6  |-  ( z  =  V  ->  ( # `
 z )  =  ( # `  V
) )
172171breq2d 4468 . . . . 5  |-  ( z  =  V  ->  (
( F `  E
)  <_  ( # `  z
)  <->  ( F `  E )  <_  ( # `
 V ) ) )
173 oveq1 6303 . . . . . 6  |-  ( z  =  V  ->  (
z C M )  =  ( V C M ) )
174173sseq1d 3526 . . . . 5  |-  ( z  =  V  ->  (
( z C M )  C_  ( `' K " { E }
)  <->  ( V C M )  C_  ( `' K " { E } ) ) )
175172, 174anbi12d 710 . . . 4  |-  ( z  =  V  ->  (
( ( F `  E )  <_  ( # `
 z )  /\  ( z C M )  C_  ( `' K " { E }
) )  <->  ( ( F `  E )  <_  ( # `  V
)  /\  ( V C M )  C_  ( `' K " { E } ) ) ) )
176175rspcev 3210 . . 3  |-  ( ( V  e.  ~P S  /\  ( ( F `  E )  <_  ( # `
 V )  /\  ( V C M ) 
C_  ( `' K " { E } ) ) )  ->  E. z  e.  ~P  S ( ( F `  E )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { E } ) ) )
177165, 169, 170, 176syl12anc 1226 . 2  |-  ( (
ph  /\  E  =/=  D )  ->  E. z  e.  ~P  S ( ( F `  E )  <_  ( # `  z
)  /\  ( z C M )  C_  ( `' K " { E } ) ) )
178161, 177pm2.61dane 2775 1  |-  ( ph  ->  E. z  e.  ~P  S ( ( F `
 E )  <_ 
( # `  z )  /\  ( z C M )  C_  ( `' K " { E } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468    u. cun 3469    C_ wss 3471   ifcif 3944   ~Pcpw 4015   {csn 4032   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   "cima 5011    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   Fincfn 7535   CCcc 9507   RRcr 9508   1c1 9510    + caddc 9512    <_ cle 9646    - cmin 9824   NNcn 10556   NN0cn0 10816   #chash 12408   Ramsey cram 14529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-hash 12409
This theorem is referenced by:  ramub1lem2  14557
  Copyright terms: Public domain W3C validator