MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagmhm Structured version   Visualization version   GIF version

Theorem pwsdiagmhm 17192
Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsdiagmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagmhm.b 𝐵 = (Base‘𝑅)
pwsdiagmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑅 ∈ Mnd)
2 pwsdiagmhm.y . . . 4 𝑌 = (𝑅s 𝐼)
32pwsmnd 17148 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑌 ∈ Mnd)
41, 3jca 553 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd))
5 pwsdiagmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
6 fvex 6113 . . . . . . 7 (Base‘𝑅) ∈ V
75, 6eqeltri 2684 . . . . . 6 𝐵 ∈ V
8 pwsdiagmhm.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
98fdiagfn 7787 . . . . . 6 ((𝐵 ∈ V ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
107, 9mpan 702 . . . . 5 (𝐼𝑊𝐹:𝐵⟶(𝐵𝑚 𝐼))
1110adantl 481 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
122, 5pwsbas 15970 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
1312feq3d 5945 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(𝐵𝑚 𝐼) ↔ 𝐹:𝐵⟶(Base‘𝑌)))
1411, 13mpbid 221 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(Base‘𝑌))
15 simplr 788 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑊)
16 eqid 2610 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
175, 16mndcl 17124 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1258 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 747 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
208fvdiagfn 7788 . . . . . 6 ((𝐼𝑊 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
2115, 19, 20syl2anc 691 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
228fvdiagfn 7788 . . . . . . . . 9 ((𝐼𝑊𝑎𝐵) → (𝐹𝑎) = (𝐼 × {𝑎}))
238fvdiagfn 7788 . . . . . . . . 9 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2422, 23oveqan12d 6568 . . . . . . . 8 (((𝐼𝑊𝑎𝐵) ∧ (𝐼𝑊𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2524anandis 869 . . . . . . 7 ((𝐼𝑊 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2625adantll 746 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
27 eqid 2610 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
28 simpll 786 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Mnd)
292, 5, 27pwsdiagel 15980 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑎𝐵) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
3029adantrr 749 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
312, 5, 27pwsdiagel 15980 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
3231adantrl 748 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
33 eqid 2610 . . . . . . 7 (+g𝑌) = (+g𝑌)
342, 27, 28, 15, 30, 32, 16, 33pwsplusgval 15973 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})))
35 id 22 . . . . . . . 8 (𝐼𝑊𝐼𝑊)
36 vex 3176 . . . . . . . . 9 𝑎 ∈ V
3736a1i 11 . . . . . . . 8 (𝐼𝑊𝑎 ∈ V)
38 vex 3176 . . . . . . . . 9 𝑏 ∈ V
3938a1i 11 . . . . . . . 8 (𝐼𝑊𝑏 ∈ V)
4035, 37, 39ofc12 6820 . . . . . . 7 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4140ad2antlr 759 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4226, 34, 413eqtrd 2648 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4321, 42eqtr4d 2647 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
4443ralrimivva 2954 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
45 simpr 476 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐼𝑊)
46 eqid 2610 . . . . . . 7 (0g𝑅) = (0g𝑅)
475, 46mndidcl 17131 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
4847adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (0g𝑅) ∈ 𝐵)
498fvdiagfn 7788 . . . . 5 ((𝐼𝑊 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
5045, 48, 49syl2anc 691 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
512, 46pws0g 17149 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × {(0g𝑅)}) = (0g𝑌))
5250, 51eqtrd 2644 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (0g𝑌))
5314, 44, 523jca 1235 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌)))
54 eqid 2610 . . 3 (0g𝑌) = (0g𝑌)
555, 27, 16, 33, 46, 54ismhm 17160 . 2 (𝐹 ∈ (𝑅 MndHom 𝑌) ↔ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌))))
564, 53, 55sylanbrc 695 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  Basecbs 15695  +gcplusg 15768  0gc0g 15923  s cpws 15930  Mndcmnd 17117   MndHom cmhm 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158
This theorem is referenced by:  pwsdiagghm  17511  pwsdiagrhm  18636
  Copyright terms: Public domain W3C validator