MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdiagfn Structured version   Visualization version   GIF version

Theorem fvdiagfn 7788
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fvdiagfn ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑊   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fvdiagfn
StepHypRef Expression
1 simpr 476 . 2 ((𝐼𝑊𝑋𝐵) → 𝑋𝐵)
2 snex 4835 . . . 4 {𝑋} ∈ V
3 xpexg 6858 . . . 4 ((𝐼𝑊 ∧ {𝑋} ∈ V) → (𝐼 × {𝑋}) ∈ V)
42, 3mpan2 703 . . 3 (𝐼𝑊 → (𝐼 × {𝑋}) ∈ V)
54adantr 480 . 2 ((𝐼𝑊𝑋𝐵) → (𝐼 × {𝑋}) ∈ V)
6 sneq 4135 . . . 4 (𝑥 = 𝑋 → {𝑥} = {𝑋})
76xpeq2d 5063 . . 3 (𝑥 = 𝑋 → (𝐼 × {𝑥}) = (𝐼 × {𝑋}))
8 fdiagfn.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
97, 8fvmptg 6189 . 2 ((𝑋𝐵 ∧ (𝐼 × {𝑋}) ∈ V) → (𝐹𝑋) = (𝐼 × {𝑋}))
101, 5, 9syl2anc 691 1 ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  pwsdiagmhm  17192  pwsdiaglmhm  18878
  Copyright terms: Public domain W3C validator