MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiaglmhm Structured version   Visualization version   GIF version

Theorem pwsdiaglmhm 18878
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwsdiaglmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiaglmhm.b 𝐵 = (Base‘𝑅)
pwsdiaglmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiaglmhm ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiaglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsdiaglmhm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2610 . 2 ( ·𝑠𝑅) = ( ·𝑠𝑅)
3 eqid 2610 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
4 eqid 2610 . 2 (Scalar‘𝑅) = (Scalar‘𝑅)
5 eqid 2610 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
6 eqid 2610 . 2 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 simpl 472 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑅 ∈ LMod)
8 pwsdiaglmhm.y . . 3 𝑌 = (𝑅s 𝐼)
98pwslmod 18791 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
108, 4pwssca 15979 . . 3 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌))
1110eqcomd 2616 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅))
12 lmodgrp 18693 . . 3 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
13 pwsdiaglmhm.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
148, 1, 13pwsdiagghm 17511 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
1512, 14sylan 487 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
16 simplr 788 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝐼𝑊)
171, 4, 2, 6lmodvscl 18703 . . . . . 6 ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
18173expb 1258 . . . . 5 ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
1918adantlr 747 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
2013fvdiagfn 7788 . . . 4 ((𝐼𝑊 ∧ (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2116, 19, 20syl2anc 691 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2213fvdiagfn 7788 . . . . . 6 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2322ad2ant2l 778 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝐼 × {𝑏}))
2423oveq2d 6565 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})))
25 eqid 2610 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 simpll 786 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑅 ∈ LMod)
27 simprl 790 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅)))
288, 1, 25pwsdiagel 15980 . . . . . 6 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
2928adantrl 748 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
308, 25, 2, 3, 4, 6, 26, 16, 27, 29pwsvscafval 15977 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘𝑓 ( ·𝑠𝑅)(𝐼 × {𝑏})))
31 id 22 . . . . . 6 (𝐼𝑊𝐼𝑊)
32 vex 3176 . . . . . . 7 𝑎 ∈ V
3332a1i 11 . . . . . 6 (𝐼𝑊𝑎 ∈ V)
34 vex 3176 . . . . . . 7 𝑏 ∈ V
3534a1i 11 . . . . . 6 (𝐼𝑊𝑏 ∈ V)
3631, 33, 35ofc12 6820 . . . . 5 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘𝑓 ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3736ad2antlr 759 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → ((𝐼 × {𝑎}) ∘𝑓 ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3824, 30, 373eqtrd 2648 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3921, 38eqtr4d 2647 . 2 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑌)(𝐹𝑏)))
401, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39islmhmd 18860 1 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  s cpws 15930  Grpcgrp 17245   GrpHom cghm 17480  LModclmod 18686   LMHom clmhm 18840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lmhm 18843
This theorem is referenced by:  pwslnmlem1  36680
  Copyright terms: Public domain W3C validator