Proof of Theorem pthdadjvtx
Step | Hyp | Ref
| Expression |
1 | | elfzo0l 40365 |
. . 3
⊢ (𝐼 ∈ (0..^(#‘𝐹)) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^(#‘𝐹)))) |
2 | | simpr 476 |
. . . . . . . . 9
⊢ ((1 <
(#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → 𝐹(PathS‘𝐺)𝑃) |
3 | | pthis1wlk 40933 |
. . . . . . . . . . 11
⊢ (𝐹(PathS‘𝐺)𝑃 → 𝐹(1Walks‘𝐺)𝑃) |
4 | | 1wlkcl 40820 |
. . . . . . . . . . 11
⊢ (𝐹(1Walks‘𝐺)𝑃 → (#‘𝐹) ∈
ℕ0) |
5 | | 1zzd 11285 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → 1 ∈ ℤ) |
6 | | nn0z 11277 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) ∈
ℕ0 → (#‘𝐹) ∈ ℤ) |
7 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → (#‘𝐹) ∈ ℤ) |
8 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → 1 < (#‘𝐹)) |
9 | | fzolb 12345 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
(1..^(#‘𝐹)) ↔ (1
∈ ℤ ∧ (#‘𝐹) ∈ ℤ ∧ 1 < (#‘𝐹))) |
10 | 5, 7, 8, 9 | syl3anbrc 1239 |
. . . . . . . . . . . . 13
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → 1 ∈ (1..^(#‘𝐹))) |
11 | | 0elfz 12305 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) ∈
ℕ0 → 0 ∈ (0...(#‘𝐹))) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → 0 ∈ (0...(#‘𝐹))) |
13 | | ax-1ne0 9884 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
0 |
14 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → 1 ≠ 0) |
15 | 10, 12, 14 | 3jca 1235 |
. . . . . . . . . . . 12
⊢
(((#‘𝐹) ∈
ℕ0 ∧ 1 < (#‘𝐹)) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈
(0...(#‘𝐹)) ∧ 1
≠ 0)) |
16 | 15 | ex 449 |
. . . . . . . . . . 11
⊢
((#‘𝐹) ∈
ℕ0 → (1 < (#‘𝐹) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈
(0...(#‘𝐹)) ∧ 1
≠ 0))) |
17 | 3, 4, 16 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐹(PathS‘𝐺)𝑃 → (1 < (#‘𝐹) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈
(0...(#‘𝐹)) ∧ 1
≠ 0))) |
18 | 17 | impcom 445 |
. . . . . . . . 9
⊢ ((1 <
(#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈
(0...(#‘𝐹)) ∧ 1
≠ 0)) |
19 | | pthdivtx 40935 |
. . . . . . . . 9
⊢ ((𝐹(PathS‘𝐺)𝑃 ∧ (1 ∈ (1..^(#‘𝐹)) ∧ 0 ∈
(0...(#‘𝐹)) ∧ 1
≠ 0)) → (𝑃‘1)
≠ (𝑃‘0)) |
20 | 2, 18, 19 | syl2anc 691 |
. . . . . . . 8
⊢ ((1 <
(#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝑃‘1) ≠ (𝑃‘0)) |
21 | 20 | necomd 2837 |
. . . . . . 7
⊢ ((1 <
(#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1)) |
22 | 21 | 3adant1 1072 |
. . . . . 6
⊢ ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘1)) |
23 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝐼 = 0 → (𝑃‘𝐼) = (𝑃‘0)) |
24 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝐼 = 0 → (𝐼 + 1) = (0 + 1)) |
25 | | 0p1e1 11009 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
26 | 24, 25 | syl6eq 2660 |
. . . . . . . . 9
⊢ (𝐼 = 0 → (𝐼 + 1) = 1) |
27 | 26 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝐼 = 0 → (𝑃‘(𝐼 + 1)) = (𝑃‘1)) |
28 | 23, 27 | neeq12d 2843 |
. . . . . . 7
⊢ (𝐼 = 0 → ((𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
29 | 28 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → ((𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
30 | 22, 29 | mpbird 246 |
. . . . 5
⊢ ((𝐼 = 0 ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
31 | 30 | 3exp 1256 |
. . . 4
⊢ (𝐼 = 0 → (1 <
(#‘𝐹) → (𝐹(PathS‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
32 | | simp3 1056 |
. . . . . 6
⊢ ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → 𝐹(PathS‘𝐺)𝑃) |
33 | | id 22 |
. . . . . . . 8
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (1..^(#‘𝐹))) |
34 | | fzo0ss1 12367 |
. . . . . . . . . 10
⊢
(1..^(#‘𝐹))
⊆ (0..^(#‘𝐹)) |
35 | 34 | sseli 3564 |
. . . . . . . . 9
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (0..^(#‘𝐹))) |
36 | | fzofzp1 12431 |
. . . . . . . . 9
⊢ (𝐼 ∈ (0..^(#‘𝐹)) → (𝐼 + 1) ∈ (0...(#‘𝐹))) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 + 1) ∈ (0...(#‘𝐹))) |
38 | | elfzoelz 12339 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ ℤ) |
39 | 38 | zcnd 11359 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ ℂ) |
40 | | 1cnd 9935 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 1 ∈
ℂ) |
41 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 1 ≠
0) |
42 | 39, 40, 41 | 3jca 1235 |
. . . . . . . . 9
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧
1 ≠ 0)) |
43 | | addn0nid 10330 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → (𝐼 + 1) ≠ 𝐼) |
44 | 43 | necomd 2837 |
. . . . . . . . 9
⊢ ((𝐼 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → 𝐼 ≠ (𝐼 + 1)) |
45 | 42, 44 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ≠ (𝐼 + 1)) |
46 | 33, 37, 45 | 3jca 1235 |
. . . . . . 7
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) |
47 | 46 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) |
48 | | pthdivtx 40935 |
. . . . . 6
⊢ ((𝐹(PathS‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ (𝐼 + 1) ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ (𝐼 + 1))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
49 | 32, 47, 48 | syl2anc 691 |
. . . . 5
⊢ ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 1 < (#‘𝐹) ∧ 𝐹(PathS‘𝐺)𝑃) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |
50 | 49 | 3exp 1256 |
. . . 4
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → (1 < (#‘𝐹) → (𝐹(PathS‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
51 | 31, 50 | jaoi 393 |
. . 3
⊢ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^(#‘𝐹))) → (1 < (#‘𝐹) → (𝐹(PathS‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
52 | 1, 51 | syl 17 |
. 2
⊢ (𝐼 ∈ (0..^(#‘𝐹)) → (1 < (#‘𝐹) → (𝐹(PathS‘𝐺)𝑃 → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))))) |
53 | 52 | 3imp31 1250 |
1
⊢ ((𝐹(PathS‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 𝐼 ∈ (0..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) |