Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp31 Structured version   Visualization version   GIF version

Theorem 3imp31 1250
 Description: The importation inference 3imp 1249 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
Hypothesis
Ref Expression
3imp.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp31 ((𝜒𝜓𝜑) → 𝜃)

Proof of Theorem 3imp31
StepHypRef Expression
1 3imp.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com13 86 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
323imp 1249 1 ((𝜒𝜓𝜑) → 𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by:  pthdadjvtx  40936  umgr2cwwk2dif  41248  clwlksf1clwwlklem  41275  frgrwopreglem2  41482  av-numclwwlkffin0  41513
 Copyright terms: Public domain W3C validator