Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   GIF version

Theorem proththd 40069
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 15448), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
proththd.l (𝜑𝐾 < (2↑𝑁))
proththd.x (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
Assertion
Ref Expression
proththd (𝜑𝑃 ∈ ℙ)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem proththd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2nn 11062 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
3 proththd.n . . . 4 (𝜑𝑁 ∈ ℕ)
43nnnn0d 11228 . . 3 (𝜑𝑁 ∈ ℕ0)
52, 4nnexpcld 12892 . 2 (𝜑 → (2↑𝑁) ∈ ℕ)
6 proththd.k . 2 (𝜑𝐾 ∈ ℕ)
7 proththd.l . 2 (𝜑𝐾 < (2↑𝑁))
8 proththd.p . . 3 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
96nncnd 10913 . . . . 5 (𝜑𝐾 ∈ ℂ)
105nncnd 10913 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
119, 10mulcomd 9940 . . . 4 (𝜑 → (𝐾 · (2↑𝑁)) = ((2↑𝑁) · 𝐾))
1211oveq1d 6564 . . 3 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) = (((2↑𝑁) · 𝐾) + 1))
138, 12eqtrd 2644 . 2 (𝜑𝑃 = (((2↑𝑁) · 𝐾) + 1))
14 simpr 476 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
15 2prm 15243 . . . . . 6 2 ∈ ℙ
1615a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℙ)
173adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
18 prmdvdsexpb 15266 . . . . 5 ((𝑝 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
1914, 16, 17, 18syl3anc 1318 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
20 proththd.x . . . . . 6 (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
213, 6, 8proththdlem 40068 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
2221simp1d 1066 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℕ)
2322nncnd 10913 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
24 peano2cnm 10226 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
27 2cnd 10970 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 10990 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan1d 10681 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3130eqcomd 2616 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) = (((𝑃 − 1) / 2) · 2))
3231oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = (𝑥↑(((𝑃 − 1) / 2) · 2)))
33 zcn 11259 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
35 2nn0 11186 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℕ0)
3721simp3d 1068 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3837nnnn0d 11228 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
3938adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 12873 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(((𝑃 − 1) / 2) · 2)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4132, 40eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4241ad4ant13 1284 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4342oveq1d 6564 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃))
4438adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
4544anim1i 590 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) ∈ ℕ0𝑥 ∈ ℤ))
4645ancomd 466 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
47 zexpcl 12737 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4948adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
5022nnrpd 11746 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ+)
5150ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 𝑃 ∈ ℝ+)
5221simp2d 1067 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝑃)
5352ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 < 𝑃)
54 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
5549, 51, 53, 54modexp2m1d 40067 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃) = 1)
5643, 55eqtrd 2644 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = 1)
57 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 2 → ((𝑃 − 1) / 𝑝) = ((𝑃 − 1) / 2))
5857eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
5958adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = 2) → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
6044, 59mpbird 246 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 𝑝) ∈ ℕ0)
6160anim2i 591 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝜑𝑝 = 2)) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
6261ancoms 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
63 zexpcl 12737 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6564zred 11358 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
6665adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
67 1red 9934 . . . . . . . . . . . . . 14 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 ∈ ℝ)
6867renegcld 10336 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → -1 ∈ ℝ)
69 oveq2 6557 . . . . . . . . . . . . . . . . . . . 20 (2 = 𝑝 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7069eqcoms 2618 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7170oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → (𝑥↑((𝑃 − 1) / 2)) = (𝑥↑((𝑃 − 1) / 𝑝)))
7271oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃))
7372eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7473adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑝 = 2) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7574adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7675biimpa 500 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃))
77 eqidd 2611 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (1 mod 𝑃) = (1 mod 𝑃))
7866, 68, 67, 67, 51, 76, 77modsub12d 12589 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) = ((-1 − 1) mod 𝑃))
7978oveq1d 6564 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((-1 − 1) mod 𝑃) gcd 𝑃))
80 peano2zm 11297 . . . . . . . . . . . . . 14 ((𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8164, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8222ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
83 modgcd 15091 . . . . . . . . . . . . 13 ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8481, 82, 83syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8584adantr 480 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
86 ax-1cn 9873 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
87 negdi2 10218 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
8887eqcomd 2616 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → (-1 − 1) = -(1 + 1))
8986, 86, 88mp2an 704 . . . . . . . . . . . . . . . . 17 (-1 − 1) = -(1 + 1)
90 1p1e2 11011 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
9190negeqi 10153 . . . . . . . . . . . . . . . . 17 -(1 + 1) = -2
9289, 91eqtri 2632 . . . . . . . . . . . . . . . 16 (-1 − 1) = -2
9392a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (-1 − 1) = -2)
9493oveq1d 6564 . . . . . . . . . . . . . 14 (𝜑 → ((-1 − 1) mod 𝑃) = (-2 mod 𝑃))
9594oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = ((-2 mod 𝑃) gcd 𝑃))
96 nnnegz 11257 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → -2 ∈ ℤ)
972, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → -2 ∈ ℤ)
98 modgcd 15091 . . . . . . . . . . . . . . 15 ((-2 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
9997, 22, 98syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
100 2z 11286 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
10122nnzd 11357 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
102 neggcd 15082 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (-2 gcd 𝑃) = (2 gcd 𝑃))
103100, 101, 102sylancr 694 . . . . . . . . . . . . . . 15 (𝜑 → (-2 gcd 𝑃) = (2 gcd 𝑃))
104 nnz 11276 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
105 oddm1d2 14922 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
107106biimprd 237 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) ∈ ℤ → ¬ 2 ∥ 𝑃))
108 nnz 11276 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) / 2) ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℤ)
109107, 108impel 484 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ¬ 2 ∥ 𝑃)
110 isoddgcd1 15277 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
112111adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
113109, 112mpbid 221 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
1141133adant2 1073 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
11521, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2 gcd 𝑃) = 1)
116103, 115eqtrd 2644 . . . . . . . . . . . . . 14 (𝜑 → (-2 gcd 𝑃) = 1)
11799, 116eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = 1)
11895, 117eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
119118ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
12079, 85, 1193eqtr3d 2652 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)
12156, 120jca 553 . . . . . . . . 9 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))
122121ex 449 . . . . . . . 8 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
123122reximdva 3000 . . . . . . 7 ((𝜑𝑝 = 2) → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
124123ex 449 . . . . . 6 (𝜑 → (𝑝 = 2 → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))))
12520, 124mpid 43 . . . . 5 (𝜑 → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
126125adantr 480 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
12719, 126sylbid 229 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
128127ralrimiva 2949 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
1295, 6, 7, 13, 128pockthg 15448 1 (𝜑𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708   mod cmo 12530  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-odz 15308  df-phi 15309  df-pc 15380
This theorem is referenced by:  41prothprm  40074
  Copyright terms: Public domain W3C validator