Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem2 Structured version   Visualization version   GIF version

Theorem ovnhoilem2 39492
 Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. Second part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem2.x (𝜑𝑋 ∈ Fin)
ovnhoilem2.n (𝜑𝑋 ≠ ∅)
ovnhoilem2.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem2.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
ovnhoilem2.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem2.f 𝐹 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
ovnhoilem2.s 𝑆 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
Assertion
Ref Expression
ovnhoilem2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑘,𝑧   𝐵,𝑎,𝑏,𝑖,𝑘,𝑧   𝑘,𝐹,𝑛   𝐼,𝑎,𝑏,𝑖,𝑛,𝑥,𝑧   𝐿,𝑎,𝑏,𝑖,𝑛,𝑥,𝑧   𝑖,𝑀,𝑧   𝑆,𝑘,𝑛   𝑋,𝑎,𝑏,𝑖,𝑗,𝑘,𝑙,𝑛   𝑥,𝑋,𝑧,𝑗,𝑘   𝜑,𝑎,𝑏,𝑖,𝑘,𝑙,𝑛   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥,𝑗,𝑛,𝑙)   𝐵(𝑥,𝑗,𝑛,𝑙)   𝑆(𝑥,𝑧,𝑖,𝑗,𝑎,𝑏,𝑙)   𝐹(𝑥,𝑧,𝑖,𝑗,𝑎,𝑏,𝑙)   𝐼(𝑗,𝑘,𝑙)   𝐿(𝑗,𝑘,𝑙)   𝑀(𝑥,𝑗,𝑘,𝑛,𝑎,𝑏,𝑙)

Proof of Theorem ovnhoilem2
StepHypRef Expression
1 ovnhoilem2.m . . . . . . . . . 10 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
21eleq2i 2680 . . . . . . . . 9 (𝑧𝑀𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
3 rabid 3095 . . . . . . . . 9 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
42, 3bitri 263 . . . . . . . 8 (𝑧𝑀 ↔ (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
54biimpi 205 . . . . . . 7 (𝑧𝑀 → (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
65simprd 478 . . . . . 6 (𝑧𝑀 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
76adantl 481 . . . . 5 ((𝜑𝑧𝑀) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
8 ovnhoilem2.l . . . . . . . . . 10 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
9 ovnhoilem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
1093ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑋 ∈ Fin)
11 ovnhoilem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
12113ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴:𝑋⟶ℝ)
13 ovnhoilem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
14133ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵:𝑋⟶ℝ)
15 elmapi 7765 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋))
1615ffvelrnda 6267 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑖𝑛) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
17 elmapi 7765 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑛) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → (𝑖𝑛):𝑋⟶(ℝ × ℝ))
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑖𝑛):𝑋⟶(ℝ × ℝ))
1918ffvelrnda 6267 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → ((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ))
20 xp1st 7089 . . . . . . . . . . . . . . . 16 (((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
22 eqid 2610 . . . . . . . . . . . . . . 15 (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))
2321, 22fmptd 6292 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
24 reex 9906 . . . . . . . . . . . . . . . 16 ℝ ∈ V
2524a1i 11 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ℝ ∈ V)
26 1nn 10908 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
2726a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 1 ∈ ℕ)
2815, 27ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑖‘1) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
29 elmapex 7764 . . . . . . . . . . . . . . . . . 18 ((𝑖‘1) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ V))
3029simprd 478 . . . . . . . . . . . . . . . . 17 ((𝑖‘1) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → 𝑋 ∈ V)
3128, 30syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑋 ∈ V)
3231adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ V)
33 elmapg 7757 . . . . . . . . . . . . . . 15 ((ℝ ∈ V ∧ 𝑋 ∈ V) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
3425, 32, 33syl2anc 691 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
3523, 34mpbird 246 . . . . . . . . . . . . 13 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋))
36 eqid 2610 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
3735, 36fmptd 6292 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑𝑚 𝑋))
38 id 22 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
39 nnex 10903 . . . . . . . . . . . . . . . 16 ℕ ∈ V
4039mptex 6390 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V
4140a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V)
42 ovnhoilem2.f . . . . . . . . . . . . . . 15 𝐹 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4342fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4438, 41, 43syl2anc 691 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4544feq1d 5943 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐹𝑖):ℕ⟶(ℝ ↑𝑚 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑𝑚 𝑋)))
4637, 45mpbird 246 . . . . . . . . . . 11 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝐹𝑖):ℕ⟶(ℝ ↑𝑚 𝑋))
47463ad2ant2 1076 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐹𝑖):ℕ⟶(ℝ ↑𝑚 𝑋))
48 xp2nd 7090 . . . . . . . . . . . . . . . 16 (((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
4919, 48syl 17 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
50 eqid 2610 . . . . . . . . . . . . . . 15 (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))
5149, 50fmptd 6292 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
52 elmapg 7757 . . . . . . . . . . . . . . 15 ((ℝ ∈ V ∧ 𝑋 ∈ V) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
5325, 32, 52syl2anc 691 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋) ↔ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
5451, 53mpbird 246 . . . . . . . . . . . . 13 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑𝑚 𝑋))
55 eqid 2610 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
5654, 55fmptd 6292 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑𝑚 𝑋))
5739mptex 6390 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V
5857a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V)
59 ovnhoilem2.s . . . . . . . . . . . . . . 15 𝑆 = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
6059fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V) → (𝑆𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
6138, 58, 60syl2anc 691 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑆𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
6261feq1d 5943 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝑆𝑖):ℕ⟶(ℝ ↑𝑚 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑𝑚 𝑋)))
6356, 62mpbird 246 . . . . . . . . . . 11 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑆𝑖):ℕ⟶(ℝ ↑𝑚 𝑋))
64633ad2ant2 1076 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝑆𝑖):ℕ⟶(ℝ ↑𝑚 𝑋))
65 simp3 1056 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
66 ovnhoilem2.i . . . . . . . . . . . . . 14 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
6766a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
68 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
6968fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → ((𝑖𝑗)‘𝑘) = ((𝑖𝑛)‘𝑘))
7069fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (1st ‘((𝑖𝑗)‘𝑘)) = (1st ‘((𝑖𝑛)‘𝑘)))
7169fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (2nd ‘((𝑖𝑗)‘𝑘)) = (2nd ‘((𝑖𝑛)‘𝑘)))
7270, 71oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 → ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
7372ixpeq2dv 7810 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
7473cbviunv 4495 . . . . . . . . . . . . . . . . 17 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘)))
7574a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
7615ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) → (𝑖𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
77 elmapi 7765 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑗) ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
7978adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
80 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
8179, 80fvovco 38376 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
8281ixpeq2dva 7809 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
8382iuneq2dv 4478 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
84 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ))
8540a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V)
8684, 85, 43syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
8786fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛))
88 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
89 mptexg 6389 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ V → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
9031, 89syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
9190adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
9236fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9388, 91, 92syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9487, 93eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9594fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘))
9695adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐹𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘))
97 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
98 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → 𝑙 = 𝑘)
9998fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ((𝑖𝑛)‘𝑙) = ((𝑖𝑛)‘𝑘))
10099fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → (1st ‘((𝑖𝑛)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑘)))
101 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
102 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (1st ‘((𝑖𝑛)‘𝑘)) ∈ V
103102a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → (1st ‘((𝑖𝑛)‘𝑘)) ∈ V)
10497, 100, 101, 103fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
105104adantlr 747 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
10696, 105eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐹𝑖)‘𝑛)‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
10761fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝑆𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛))
109 mptexg 6389 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ V → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
11031, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
111110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
11255fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
11388, 111, 112syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
114108, 113eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
115114fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑆𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))
116115adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑆𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))
117 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
118 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = 𝑘 → ((𝑖𝑛)‘𝑙) = ((𝑖𝑛)‘𝑘))
119118fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑘)))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑘)))
121 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ‘((𝑖𝑛)‘𝑘)) ∈ V
122121a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝑖𝑛)‘𝑘)) ∈ V)
123117, 120, 101, 122fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
124123adantlr 747 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
125116, 124eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑆𝑖)‘𝑛)‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
126106, 125oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
127126ixpeq2dva 7809 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
128127iuneq2dv 4478 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
12975, 83, 1283eqtr4d 2654 . . . . . . . . . . . . . . 15 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
130129adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1311303adant3 1074 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
13267, 131sseq12d 3597 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘))))
13365, 132mpbid 221 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1341333adant3r 1315 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1358, 10, 12, 14, 47, 64, 134hoidmvle 39490 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))))
136 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑗𝑙𝑋) → 𝑛 = 𝑗)
137136fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑗𝑙𝑋) → (𝑖𝑛) = (𝑖𝑗))
138137fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑗𝑙𝑋) → ((𝑖𝑛)‘𝑙) = ((𝑖𝑗)‘𝑙))
139138fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑗𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑙)))
140139mpteq2dva 4672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))
141140fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘))
142141adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘))
143 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))
144 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = 𝑘 → ((𝑖𝑗)‘𝑙) = ((𝑖𝑗)‘𝑘))
145144fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑘)))
146145adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑋𝑙 = 𝑘) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑘)))
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋𝑘𝑋)
148 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (1st ‘((𝑖𝑗)‘𝑘)) ∈ V
149148a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (1st ‘((𝑖𝑗)‘𝑘)) ∈ V)
150143, 146, 147, 149fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑋 → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
151150adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
152142, 151eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
153138fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑗𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑙)))
154153mpteq2dva 4672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))
155154fveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘))
156155adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘))
157 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))
158144fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑘)))
159158adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑋𝑙 = 𝑘) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑘)))
160 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ‘((𝑖𝑗)‘𝑘)) ∈ V
161160a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (2nd ‘((𝑖𝑗)‘𝑘)) ∈ V)
162157, 159, 147, 161fvmptd 6197 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑋 → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
163162adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
164156, 163eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
165152, 164oveq12d 6567 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 𝑗𝑘𝑋) → (((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)) = ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
166165fveq2d 6107 . . . . . . . . . . . . . . . . 17 ((𝑛 = 𝑗𝑘𝑋) → (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))) = (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
167166prodeq2dv 14492 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))) = ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
168167cbvmptv 4678 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
169168a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))))
17081eqcomd 2616 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = (([,) ∘ (𝑖𝑗))‘𝑘))
171170fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
172171prodeq2dv 14492 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
173172mpteq2dva 4672 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
174169, 173eqtrd 2644 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
175174fveq2d 6107 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1761753ad2ant2 1076 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
17794adantll 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
178114adantll 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
179177, 178oveq12d 6567 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))(𝐿𝑋)(𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
1809ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
181 ovnhoilem2.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
182181ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
18319adantlll 750 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → ((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ))
184183, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
185184, 22fmptd 6292 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
186183, 48syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
187186, 50fmptd 6292 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
1888, 180, 182, 185, 187hoidmvn0val 39474 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))(𝐿𝑋)(𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) = ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))
189179, 188eqtrd 2644 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)) = ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))
190189mpteq2dva 4672 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))))
191190fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))))
1921913adant3 1074 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))))
193 simp3 1056 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
194176, 192, 1933eqtr4d 2654 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = 𝑧)
1951943adant3l 1314 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = 𝑧)
196135, 195breqtrd 4609 . . . . . . . 8 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
1971963exp 1256 . . . . . . 7 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)))
198197adantr 480 . . . . . 6 ((𝜑𝑧𝑀) → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)))
199198rexlimdv 3012 . . . . 5 ((𝜑𝑧𝑀) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
2007, 199mpd 15 . . . 4 ((𝜑𝑧𝑀) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
201200ralrimiva 2949 . . 3 (𝜑 → ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
202 ssrab2 3650 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
2031, 202eqsstri 3598 . . . . 5 𝑀 ⊆ ℝ*
204203a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
205 icossxr 12129 . . . . 5 (0[,)+∞) ⊆ ℝ*
2068, 9, 11, 13hoidmvcl 39472 . . . . 5 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
207205, 206sseldi 3566 . . . 4 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
208 infxrgelb 12037 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐴(𝐿𝑋)𝐵) ∈ ℝ*) → ((𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
209204, 207, 208syl2anc 691 . . 3 (𝜑 → ((𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
210201, 209mpbird 246 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ))
21166a1i 11 . . . . 5 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
212 nfv 1830 . . . . . 6 𝑘𝜑
21311ffvelrnda 6267 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
21413ffvelrnda 6267 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
215214rexrd 9968 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
216212, 213, 215hoissrrn2 39468 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
217211, 216eqsstrd 3602 . . . 4 (𝜑𝐼 ⊆ (ℝ ↑𝑚 𝑋))
2189, 181, 217, 1ovnn0val 39441 . . 3 (𝜑 → ((voln*‘𝑋)‘𝐼) = inf(𝑀, ℝ*, < ))
219218eqcomd 2616 . 2 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐼))
220210, 219breqtrd 4609 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ifcif 4036  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  infcinf 8230  ℝcr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℕcn 10897  [,)cico 12048  ∏cprod 14474  volcvol 23039  Σ^csumge0 39255  voln*covoln 39426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256  df-ovoln 39427 This theorem is referenced by:  ovnhoi  39493
 Copyright terms: Public domain W3C validator