Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoi Structured version   Visualization version   GIF version

Theorem ovnhoi 39493
Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoi.x (𝜑𝑋 ∈ Fin)
ovnhoi.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoi.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoi.c 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoi.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
ovnhoi (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem ovnhoi
Dummy variables 𝑐 𝑑 𝑖 𝑗 𝑛 𝑧 𝑦 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnhoi.x . . 3 (𝜑𝑋 ∈ Fin)
2 ovnhoi.c . . . . 5 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
32a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
4 nfv 1830 . . . . 5 𝑘𝜑
5 ovnhoi.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
65ffvelrnda 6267 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
7 ovnhoi.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87ffvelrnda 6267 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
98rexrd 9968 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
104, 6, 9hoissrrn2 39468 . . . 4 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑𝑚 𝑋))
113, 10eqsstrd 3602 . . 3 (𝜑𝐼 ⊆ (ℝ ↑𝑚 𝑋))
121, 11ovnxrcl 39459 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ∈ ℝ*)
13 icossxr 12129 . . 3 (0[,)+∞) ⊆ ℝ*
14 ovnhoi.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1514, 1, 5, 7hoidmvcl 39472 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
1613, 15sseldi 3566 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
17 fveq2 6103 . . . . . . . 8 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
1817fveq1d 6105 . . . . . . 7 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
1918adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = ((voln*‘∅)‘𝐼))
20 ixpeq1 7805 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)))
21 ixp0x 7822 . . . . . . . . . . . 12 X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅}
2221a1i 11 . . . . . . . . . . 11 (𝑋 = ∅ → X𝑘 ∈ ∅ ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2320, 22eqtrd 2644 . . . . . . . . . 10 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
2423adantl 481 . . . . . . . . 9 ((𝜑𝑋 = ∅) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) = {∅})
252a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
26 reex 9906 . . . . . . . . . . 11 ℝ ∈ V
27 mapdm0 38378 . . . . . . . . . . 11 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
2826, 27ax-mp 5 . . . . . . . . . 10 (ℝ ↑𝑚 ∅) = {∅}
2928a1i 11 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 ∅) = {∅})
3024, 25, 293eqtr4d 2654 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐼 = (ℝ ↑𝑚 ∅))
31 eqimss 3620 . . . . . . . 8 (𝐼 = (ℝ ↑𝑚 ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3230, 31syl 17 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐼 ⊆ (ℝ ↑𝑚 ∅))
3332ovn0val 39440 . . . . . 6 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐼) = 0)
3419, 33eqtrd 2644 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = 0)
35 0red 9920 . . . . 5 ((𝜑𝑋 = ∅) → 0 ∈ ℝ)
3634, 35eqeltrd 2688 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ∈ ℝ)
37 eqidd 2611 . . . . 5 ((𝜑𝑋 = ∅) → 0 = 0)
38 fveq2 6103 . . . . . . . 8 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3938oveqd 6566 . . . . . . 7 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
4039adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
415adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
42 simpr 476 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
4342feq2d 5944 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
4441, 43mpbid 221 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
457adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
4642feq2d 5944 . . . . . . . 8 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
4745, 46mpbid 221 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
4814, 44, 47hoidmv0val 39473 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
4940, 48eqtrd 2644 . . . . 5 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
5037, 34, 493eqtr4d 2654 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
5136, 50eqled 10019 . . 3 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
52 eqid 2610 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
53 eqeq1 2614 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 = 1 ↔ 𝑗 = 1))
5453ifbid 4058 . . . . . . . 8 (𝑛 = 𝑗 → if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩) = if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))
5554mpteq2dv 4673 . . . . . . 7 (𝑛 = 𝑗 → (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)) = (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
5655cbvmptv 4678 . . . . . 6 (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑛 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩))) = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ if(𝑗 = 1, ⟨(𝐴𝑘), (𝐵𝑘)⟩, ⟨0, 0⟩)))
571, 5, 7, 2, 52, 56ovnhoilem1 39491 . . . . 5 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5857adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
591adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
60 neqne 2790 . . . . . . 7 𝑋 = ∅ → 𝑋 ≠ ∅)
6160adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
625adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
637adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
6414, 59, 61, 62, 63hoidmvn0val 39474 . . . . 5 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6564eqcomd 2616 . . . 4 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (𝐴(𝐿𝑋)𝐵))
6658, 65breqtrd 4609 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6751, 66pm2.61dan 828 . 2 (𝜑 → ((voln*‘𝑋)‘𝐼) ≤ (𝐴(𝐿𝑋)𝐵))
6849, 35eqeltrd 2688 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ∈ ℝ)
6950eqcomd 2616 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = ((voln*‘𝑋)‘𝐼))
7068, 69eqled 10019 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
71 fveq1 6102 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎𝑘) = (𝑐𝑘))
7271oveq1d 6564 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((𝑎𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑏𝑘)))
7372fveq2d 6107 . . . . . . . . . . 11 (𝑎 = 𝑐 → (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7473prodeq2ad 38659 . . . . . . . . . 10 (𝑎 = 𝑐 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))))
7574ifeq2d 4055 . . . . . . . . 9 (𝑎 = 𝑐 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))))
76 fveq1 6102 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝑏𝑘) = (𝑑𝑘))
7776oveq2d 6565 . . . . . . . . . . . 12 (𝑏 = 𝑑 → ((𝑐𝑘)[,)(𝑏𝑘)) = ((𝑐𝑘)[,)(𝑑𝑘)))
7877fveq2d 6107 . . . . . . . . . . 11 (𝑏 = 𝑑 → (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
7978prodeq2ad 38659 . . . . . . . . . 10 (𝑏 = 𝑑 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8079ifeq2d 4055 . . . . . . . . 9 (𝑏 = 𝑑 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑏𝑘)))) = if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8175, 80cbvmpt2v 6633 . . . . . . . 8 (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8281a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
83 oveq2 6557 . . . . . . . 8 (𝑥 = 𝑦 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑦))
84 eqeq1 2614 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
85 prodeq1 14478 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))) = ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))
8684, 85ifbieq2d 4061 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘)))))
8783, 83, 86mpt2eq123dv 6615 . . . . . . 7 (𝑥 = 𝑦 → (𝑐 ∈ (ℝ ↑𝑚 𝑥), 𝑑 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8882, 87eqtrd 2644 . . . . . 6 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
8988cbvmptv 4678 . . . . 5 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
9014, 89eqtri 2632 . . . 4 𝐿 = (𝑦 ∈ Fin ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑦), 𝑑 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑐𝑘)[,)(𝑑𝑘))))))
91 eqeq1 2614 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))))
9291anbi2d 736 . . . . . . 7 (𝑤 = 𝑧 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
9392rexbidv 3034 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))))
94 simpl 472 . . . . . . . . . . . . . . 15 (( = 𝑖𝑗 ∈ ℕ) → = 𝑖)
9594fveq1d 6105 . . . . . . . . . . . . . 14 (( = 𝑖𝑗 ∈ ℕ) → (𝑗) = (𝑖𝑗))
9695coeq2d 5206 . . . . . . . . . . . . 13 (( = 𝑖𝑗 ∈ ℕ) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
9796fveq1d 6105 . . . . . . . . . . . 12 (( = 𝑖𝑗 ∈ ℕ) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
9897ixpeq2dv 7810 . . . . . . . . . . 11 (( = 𝑖𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
9998iuneq2dv 4478 . . . . . . . . . 10 ( = 𝑖 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
10099sseq2d 3596 . . . . . . . . 9 ( = 𝑖 → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ↔ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
101 simpl 472 . . . . . . . . . . . . . . . . 17 (( = 𝑖𝑘𝑋) → = 𝑖)
102101fveq1d 6105 . . . . . . . . . . . . . . . 16 (( = 𝑖𝑘𝑋) → (𝑗) = (𝑖𝑗))
103102coeq2d 5206 . . . . . . . . . . . . . . 15 (( = 𝑖𝑘𝑋) → ([,) ∘ (𝑗)) = ([,) ∘ (𝑖𝑗)))
104103fveq1d 6105 . . . . . . . . . . . . . 14 (( = 𝑖𝑘𝑋) → (([,) ∘ (𝑗))‘𝑘) = (([,) ∘ (𝑖𝑗))‘𝑘))
105104fveq2d 6107 . . . . . . . . . . . . 13 (( = 𝑖𝑘𝑋) → (vol‘(([,) ∘ (𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
106105prodeq2dv 14492 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
107106mpteq2dv 4673 . . . . . . . . . . 11 ( = 𝑖 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
108107fveq2d 6107 . . . . . . . . . 10 ( = 𝑖 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
109108eqeq2d 2620 . . . . . . . . 9 ( = 𝑖 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
110100, 109anbi12d 743 . . . . . . . 8 ( = 𝑖 → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
111110cbvrexv 3148 . . . . . . 7 (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
112111a1i 11 . . . . . 6 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
11393, 112bitrd 267 . . . . 5 (𝑤 = 𝑧 → (∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
114113cbvrabv 3172 . . . 4 {𝑤 ∈ ℝ* ∣ ∃ ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑗))‘𝑘) ∧ 𝑤 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
115 simpl 472 . . . . . . . . . 10 ((𝑗 = 𝑛𝑙𝑋) → 𝑗 = 𝑛)
116115fveq2d 6107 . . . . . . . . 9 ((𝑗 = 𝑛𝑙𝑋) → (𝑖𝑗) = (𝑖𝑛))
117116fveq1d 6105 . . . . . . . 8 ((𝑗 = 𝑛𝑙𝑋) → ((𝑖𝑗)‘𝑙) = ((𝑖𝑛)‘𝑙))
118117fveq2d 6107 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑙)))
119118mpteq2dva 4672 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
120119cbvmptv 4678 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
121120mpteq2i 4669 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
122117fveq2d 6107 . . . . . . 7 ((𝑗 = 𝑛𝑙𝑋) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑙)))
123122mpteq2dva 4672 . . . . . 6 (𝑗 = 𝑛 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
124123cbvmptv 4678 . . . . 5 (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
125124mpteq2i 4669 . . . 4 (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑗 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))) = (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
12659, 61, 62, 63, 2, 90, 114, 121, 125ovnhoilem2 39492 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12770, 126pm2.61dan 828 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
12812, 16, 67, 127xrletrid 11862 1 (𝜑 → ((voln*‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  {csn 4125  cop 4131   ciun 4455   class class class wbr 4583  cmpt 4643   × cxp 5036  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950  *cxr 9952  cle 9954  cn 10897  [,)cico 12048  cprod 14474  volcvol 23039  Σ^csumge0 39255  voln*covoln 39426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256  df-ovoln 39427
This theorem is referenced by:  vonhoi  39557
  Copyright terms: Public domain W3C validator