MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulg Structured version   Visualization version   GIF version

Theorem odmulg 17796
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulg ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))

Proof of Theorem odmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odmulgid.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odmulgid.3 . . . . . . . . 9 · = (.g𝐺)
31, 2mulgcl 17382 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
433com23 1263 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ 𝑋)
5 odmulgid.2 . . . . . . . 8 𝑂 = (od‘𝐺)
61, 5odcl 17778 . . . . . . 7 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
74, 6syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
87nn0cnd 11230 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
98adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
109mul02d 10113 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (0 · (𝑂‘(𝑁 · 𝐴))) = 0)
11 simpr 476 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑁 gcd (𝑂𝐴)) = 0)
1211oveq1d 6564 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) = (0 · (𝑂‘(𝑁 · 𝐴))))
13 simp3 1056 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
141, 5odcl 17778 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
15143ad2ant2 1076 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
1615nn0zd 11356 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
17 gcdeq0 15076 . . . . 5 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1813, 16, 17syl2anc 691 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) = 0 ↔ (𝑁 = 0 ∧ (𝑂𝐴) = 0)))
1918simplbda 652 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = 0)
2010, 12, 193eqtr4rd 2655 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) = 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
21 simpll3 1095 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
2216ad2antrr 758 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂𝐴) ∈ ℤ)
23 gcddvds 15063 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2421, 22, 23syl2anc 691 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑁 ∧ (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴)))
2524simprd 478 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴))
2613, 16gcdcld 15068 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2726adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
2827nn0zd 11356 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
2928adantr 480 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
30 nn0z 11277 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3130adantl 481 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
32 dvdstr 14856 . . . . . . 7 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3329, 22, 31, 32syl3anc 1318 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑥) → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3425, 33mpand 707 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
357nn0zd 11356 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
3635ad2antrr 758 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
37 muldvds1 14844 . . . . . 6 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
3829, 36, 31, 37syl3anc 1318 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥 → (𝑁 gcd (𝑂𝐴)) ∥ 𝑥))
39 dvdszrcl 14826 . . . . . . . . 9 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ))
40 divides 14823 . . . . . . . . 9 (((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4139, 40syl 17 . . . . . . . 8 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 ↔ ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥))
4241ibi 255 . . . . . . 7 ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥)
4335adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑂‘(𝑁 · 𝐴)) ∈ ℤ)
44 simprr 792 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
4528adantrr 749 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℤ)
46 simprl 790 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ≠ 0)
47 dvdscmulr 14848 . . . . . . . . . . . . 13 (((𝑂‘(𝑁 · 𝐴)) ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ((𝑁 gcd (𝑂𝐴)) ∈ ℤ ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
4843, 44, 45, 46, 47syl112anc 1322 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ (𝑂‘(𝑁 · 𝐴)) ∥ 𝑦))
491, 5, 2odmulgid 17794 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
5049adantrl 748 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂‘(𝑁 · 𝐴)) ∥ 𝑦 ↔ (𝑂𝐴) ∥ (𝑦 · 𝑁)))
51 simpl3 1059 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
52 dvdsmulgcd 15112 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5344, 51, 52syl2anc 691 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · 𝑁) ↔ (𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5448, 50, 533bitrrd 294 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦)))
5545zcnd 11359 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
5644zcnd 11359 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
5755, 56mulcomd 9940 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑁 gcd (𝑂𝐴)) · 𝑦) = (𝑦 · (𝑁 gcd (𝑂𝐴))))
5857breq2d 4595 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ ((𝑁 gcd (𝑂𝐴)) · 𝑦) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
5954, 58bitrd 267 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ ((𝑁 gcd (𝑂𝐴)) ≠ 0 ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
6059anassrs 678 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))))
61 breq2 4587 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ (𝑂𝐴) ∥ 𝑥))
62 breq2 4587 . . . . . . . . . 10 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6361, 62bibi12d 334 . . . . . . . . 9 ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → (((𝑂𝐴) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴))) ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ (𝑦 · (𝑁 gcd (𝑂𝐴)))) ↔ ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6460, 63syl5ibcom 234 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑦 ∈ ℤ) → ((𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6564rexlimdva 3013 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (∃𝑦 ∈ ℤ (𝑦 · (𝑁 gcd (𝑂𝐴))) = 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6642, 65syl5 33 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6766adantr 480 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑁 gcd (𝑂𝐴)) ∥ 𝑥 → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
6834, 38, 67pm5.21ndd 368 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) ∧ 𝑥 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
6968ralrimiva 2949 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥))
7015adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) ∈ ℕ0)
717adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
7227, 71nn0mulcld 11233 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0)
73 dvdsext 14881 . . . 4 (((𝑂𝐴) ∈ ℕ0 ∧ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∈ ℕ0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7470, 72, 73syl2anc 691 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → ((𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ↔ ∀𝑥 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑥 ↔ ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))) ∥ 𝑥)))
7569, 74mpbird 246 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 gcd (𝑂𝐴)) ≠ 0) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
7620, 75pm2.61dane 2869 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  0cn0 11169  cz 11254  cdvds 14821   gcd cgcd 15054  Basecbs 15695  Grpcgrp 17245  .gcmg 17363  odcod 17767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-od 17771
This theorem is referenced by:  odmulgeq  17797  odinv  17801  gexexlem  18078
  Copyright terms: Public domain W3C validator