Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgdsdir Structured version   Visualization version   GIF version

Theorem nrgdsdir 22280
 Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nmmul.x 𝑋 = (Base‘𝑅)
nmmul.n 𝑁 = (norm‘𝑅)
nmmul.t · = (.r𝑅)
nrgdsdi.d 𝐷 = (dist‘𝑅)
Assertion
Ref Expression
nrgdsdir ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)))

Proof of Theorem nrgdsdir
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmRing)
2 nrgring 22277 . . . . . . 7 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
32adantr 480 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Ring)
4 ringgrp 18375 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
53, 4syl 17 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ Grp)
6 simpr1 1060 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
7 simpr2 1061 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
8 nmmul.x . . . . . 6 𝑋 = (Base‘𝑅)
9 eqid 2610 . . . . . 6 (-g𝑅) = (-g𝑅)
108, 9grpsubcl 17318 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑅)𝐵) ∈ 𝑋)
115, 6, 7, 10syl3anc 1318 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(-g𝑅)𝐵) ∈ 𝑋)
12 simpr3 1062 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
13 nmmul.n . . . . 5 𝑁 = (norm‘𝑅)
14 nmmul.t . . . . 5 · = (.r𝑅)
158, 13, 14nmmul 22278 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴(-g𝑅)𝐵) ∈ 𝑋𝐶𝑋) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
161, 11, 12, 15syl3anc 1318 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
178, 14, 9, 3, 6, 7, 12rngsubdir 18423 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴(-g𝑅)𝐵) · 𝐶) = ((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶)))
1817fveq2d 6107 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝑁‘((𝐴(-g𝑅)𝐵) · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
1916, 18eqtr3d 2646 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
20 nrgngp 22276 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
2120adantr 480 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝑅 ∈ NrmGrp)
22 nrgdsdi.d . . . . 5 𝐷 = (dist‘𝑅)
2313, 8, 9, 22ngpds 22218 . . . 4 ((𝑅 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝑅)𝐵)))
2421, 6, 7, 23syl3anc 1318 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝑅)𝐵)))
2524oveq1d 6564 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝑁‘(𝐴(-g𝑅)𝐵)) · (𝑁𝐶)))
268, 14ringcl 18384 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ 𝑋)
273, 6, 12, 26syl3anc 1318 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴 · 𝐶) ∈ 𝑋)
288, 14ringcl 18384 . . . 4 ((𝑅 ∈ Ring ∧ 𝐵𝑋𝐶𝑋) → (𝐵 · 𝐶) ∈ 𝑋)
293, 7, 12, 28syl3anc 1318 . . 3 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 · 𝐶) ∈ 𝑋)
3013, 8, 9, 22ngpds 22218 . . 3 ((𝑅 ∈ NrmGrp ∧ (𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 · 𝐶) ∈ 𝑋) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
3121, 27, 29, 30syl3anc 1318 . 2 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)) = (𝑁‘((𝐴 · 𝐶)(-g𝑅)(𝐵 · 𝐶))))
3219, 25, 313eqtr4d 2654 1 ((𝑅 ∈ NrmRing ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵) · (𝑁𝐶)) = ((𝐴 · 𝐶)𝐷(𝐵 · 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549   · cmul 9820  Basecbs 15695  .rcmulr 15769  distcds 15777  Grpcgrp 17245  -gcsg 17247  Ringcrg 18370  normcnm 22191  NrmGrpcngp 22192  NrmRingcnrg 22194 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-abv 18640  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nrg 22200 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator