Step | Hyp | Ref
| Expression |
1 | | nmoleub2.n |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
2 | | nmoleub2.v |
. 2
⊢ 𝑉 = (Base‘𝑆) |
3 | | nmoleub2.l |
. 2
⊢ 𝐿 = (norm‘𝑆) |
4 | | nmoleub2.m |
. 2
⊢ 𝑀 = (norm‘𝑇) |
5 | | nmoleub2.g |
. 2
⊢ 𝐺 = (Scalar‘𝑆) |
6 | | nmoleub2.w |
. 2
⊢ 𝐾 = (Base‘𝐺) |
7 | | nmoleub2.s |
. 2
⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩
ℂMod)) |
8 | | nmoleub2.t |
. 2
⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩
ℂMod)) |
9 | | nmoleub2.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
10 | | nmoleub2.a |
. 2
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
11 | | nmoleub2.r |
. 2
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
12 | | lmghm 18852 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
13 | | eqid 2610 |
. . . . . . . . . 10
⊢
(0g‘𝑆) = (0g‘𝑆) |
14 | | eqid 2610 |
. . . . . . . . . 10
⊢
(0g‘𝑇) = (0g‘𝑇) |
15 | 13, 14 | ghmid 17489 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
16 | 9, 12, 15 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
17 | 16 | fveq2d 6107 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(𝐹‘(0g‘𝑆))) = (𝑀‘(0g‘𝑇))) |
18 | | inss1 3795 |
. . . . . . . . 9
⊢ (NrmMod
∩ ℂMod) ⊆ NrmMod |
19 | 18, 8 | sseldi 3566 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ NrmMod) |
20 | | nlmngp 22291 |
. . . . . . . 8
⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp) |
21 | 4, 14 | nm0 22243 |
. . . . . . . 8
⊢ (𝑇 ∈ NrmGrp → (𝑀‘(0g‘𝑇)) = 0) |
22 | 19, 20, 21 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(0g‘𝑇)) = 0) |
23 | 17, 22 | eqtrd 2644 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝐹‘(0g‘𝑆))) = 0) |
24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → (𝑀‘(𝐹‘(0g‘𝑆))) = 0) |
25 | 24 | oveq1d 6564 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) = (0 / 𝑅)) |
26 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈
ℝ+) |
27 | 26 | rpcnd 11750 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ∈ ℂ) |
28 | 26 | rpne0d 11753 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 𝑅 ≠ 0) |
29 | 27, 28 | div0d 10679 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → (0 / 𝑅) = 0) |
30 | 25, 29 | eqtrd 2644 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) = 0) |
31 | 18, 7 | sseldi 3566 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ NrmMod) |
32 | | nlmngp 22291 |
. . . . . . 7
⊢ (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ NrmGrp) |
34 | | ngpgrp 22213 |
. . . . . 6
⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) |
35 | 2, 13 | grpidcl 17273 |
. . . . . 6
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝑉) |
36 | 33, 34, 35 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0g‘𝑆) ∈ 𝑉) |
37 | 36 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → (0g‘𝑆) ∈ 𝑉) |
38 | 2, 3 | nmcl 22230 |
. . . . . . . . 9
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝑥) ∈ ℝ) |
39 | 33, 38 | sylan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝑥) ∈ ℝ) |
40 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈
ℝ+) |
41 | 40 | rpred 11748 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ ℝ) |
42 | | nmoleub2lem2.7 |
. . . . . . . 8
⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥) < 𝑅 → (𝐿‘𝑥)𝑂𝑅)) |
43 | 39, 41, 42 | syl2anc 691 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝑥) < 𝑅 → (𝐿‘𝑥)𝑂𝑅)) |
44 | 43 | imim1d 80 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) |
45 | 44 | ralimdva 2945 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) → ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) |
46 | 45 | imp 444 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) |
47 | 3, 13 | nm0 22243 |
. . . . . . 7
⊢ (𝑆 ∈ NrmGrp → (𝐿‘(0g‘𝑆)) = 0) |
48 | 31, 32, 47 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝐿‘(0g‘𝑆)) = 0) |
49 | 48 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g‘𝑆)) = 0) |
50 | 26 | rpgt0d 11751 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 < 𝑅) |
51 | 49, 50 | eqbrtrd 4605 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → (𝐿‘(0g‘𝑆)) < 𝑅) |
52 | | fveq2 6103 |
. . . . . . 7
⊢ (𝑥 = (0g‘𝑆) → (𝐿‘𝑥) = (𝐿‘(0g‘𝑆))) |
53 | 52 | breq1d 4593 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑆) → ((𝐿‘𝑥) < 𝑅 ↔ (𝐿‘(0g‘𝑆)) < 𝑅)) |
54 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = (0g‘𝑆) → (𝐹‘𝑥) = (𝐹‘(0g‘𝑆))) |
55 | 54 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝑥 = (0g‘𝑆) → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘(0g‘𝑆)))) |
56 | 55 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑥 = (0g‘𝑆) → ((𝑀‘(𝐹‘𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅)) |
57 | 56 | breq1d 4593 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑆) → (((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) ≤ 𝐴)) |
58 | 53, 57 | imbi12d 333 |
. . . . 5
⊢ (𝑥 = (0g‘𝑆) → (((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(0g‘𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) ≤ 𝐴))) |
59 | 58 | rspcv 3278 |
. . . 4
⊢
((0g‘𝑆) ∈ 𝑉 → (∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿‘(0g‘𝑆)) < 𝑅 → ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) ≤ 𝐴))) |
60 | 37, 46, 51, 59 | syl3c 64 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → ((𝑀‘(𝐹‘(0g‘𝑆))) / 𝑅) ≤ 𝐴) |
61 | 30, 60 | eqbrtrrd 4607 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) |
62 | | simp-4l 802 |
. . . . 5
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝜑) |
63 | 62, 7 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝑆 ∈ (NrmMod ∩
ℂMod)) |
64 | 62, 8 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝑇 ∈ (NrmMod ∩
ℂMod)) |
65 | 62, 9 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
66 | 62, 10 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝐴 ∈
ℝ*) |
67 | 62, 11 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝑅 ∈
ℝ+) |
68 | | nmoleub2a.5 |
. . . . 5
⊢ (𝜑 → ℚ ⊆ 𝐾) |
69 | 62, 68 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → ℚ ⊆ 𝐾) |
70 | | eqid 2610 |
. . . 4
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
71 | | simpllr 795 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝐴 ∈ ℝ) |
72 | 61 | ad3antrrr 762 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 0 ≤ 𝐴) |
73 | | simplrl 796 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝑦 ∈ 𝑉) |
74 | | simplrr 797 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → 𝑦 ≠ (0g‘𝑆)) |
75 | 46 | ad3antrrr 762 |
. . . . 5
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) |
76 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → (𝐿‘𝑥) = (𝐿‘(𝑧( ·𝑠
‘𝑆)𝑦))) |
77 | 76 | breq1d 4593 |
. . . . . . 7
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → ((𝐿‘𝑥) < 𝑅 ↔ (𝐿‘(𝑧( ·𝑠
‘𝑆)𝑦)) < 𝑅)) |
78 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → (𝐹‘𝑥) = (𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) |
79 | 78 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦)))) |
80 | 79 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → ((𝑀‘(𝐹‘𝑥)) / 𝑅) = ((𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) / 𝑅)) |
81 | 80 | breq1d 4593 |
. . . . . . 7
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → (((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴)) |
82 | 77, 81 | imbi12d 333 |
. . . . . 6
⊢ (𝑥 = (𝑧( ·𝑠
‘𝑆)𝑦) → (((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘(𝑧( ·𝑠
‘𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
83 | 82 | rspccv 3279 |
. . . . 5
⊢
(∀𝑥 ∈
𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) → ((𝑧( ·𝑠
‘𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠
‘𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
84 | 75, 83 | syl 17 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → ((𝑧( ·𝑠
‘𝑆)𝑦) ∈ 𝑉 → ((𝐿‘(𝑧( ·𝑠
‘𝑆)𝑦)) < 𝑅 → ((𝑀‘(𝐹‘(𝑧( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
85 | | simpr 476 |
. . . 4
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) → ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) |
86 | 1, 2, 3, 4, 5, 6, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 84, 85 | nmoleub2lem3 22723 |
. . 3
⊢ ¬
((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) |
87 | | iman 439 |
. . 3
⊢
(((((𝜑 ∧
∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) ↔ ¬ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) ∧ ¬ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦)))) |
88 | 86, 87 | mpbir 220 |
. 2
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) |
89 | | nmoleub2lem2.6 |
. . 3
⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥)𝑂𝑅 → (𝐿‘𝑥) ≤ 𝑅)) |
90 | 39, 41, 89 | syl2anc 691 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝑥)𝑂𝑅 → (𝐿‘𝑥) ≤ 𝑅)) |
91 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 61, 88, 90 | nmoleub2lem 22722 |
1
⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) |