MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoleub2lem2 Structured version   Unicode version

Theorem nmoleub2lem2 20693
Description: Lemma for nmoleub2a 20694 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.)
Hypotheses
Ref Expression
nmoleub2.n  |-  N  =  ( S normOp T )
nmoleub2.v  |-  V  =  ( Base `  S
)
nmoleub2.l  |-  L  =  ( norm `  S
)
nmoleub2.m  |-  M  =  ( norm `  T
)
nmoleub2.g  |-  G  =  (Scalar `  S )
nmoleub2.w  |-  K  =  ( Base `  G
)
nmoleub2.s  |-  ( ph  ->  S  e.  (NrmMod  i^i CMod ) )
nmoleub2.t  |-  ( ph  ->  T  e.  (NrmMod  i^i CMod ) )
nmoleub2.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
nmoleub2.a  |-  ( ph  ->  A  e.  RR* )
nmoleub2.r  |-  ( ph  ->  R  e.  RR+ )
nmoleub2a.5  |-  ( ph  ->  QQ  C_  K )
nmoleub2lem2.6  |-  ( ( ( L `  x
)  e.  RR  /\  R  e.  RR )  ->  ( ( L `  x ) O R  ->  ( L `  x )  <_  R
) )
nmoleub2lem2.7  |-  ( ( ( L `  x
)  e.  RR  /\  R  e.  RR )  ->  ( ( L `  x )  <  R  ->  ( L `  x
) O R ) )
Assertion
Ref Expression
nmoleub2lem2  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( ( L `  x
) O R  -> 
( ( M `  ( F `  x ) )  /  R )  <_  A ) ) )
Distinct variable groups:    x, A    x, F    x, L    x, N    x, M    ph, x    x, S    x, V    x, R
Allowed substitution hints:    T( x)    G( x)    K( x)    O( x)

Proof of Theorem nmoleub2lem2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoleub2.n . 2  |-  N  =  ( S normOp T )
2 nmoleub2.v . 2  |-  V  =  ( Base `  S
)
3 nmoleub2.l . 2  |-  L  =  ( norm `  S
)
4 nmoleub2.m . 2  |-  M  =  ( norm `  T
)
5 nmoleub2.g . 2  |-  G  =  (Scalar `  S )
6 nmoleub2.w . 2  |-  K  =  ( Base `  G
)
7 nmoleub2.s . 2  |-  ( ph  ->  S  e.  (NrmMod  i^i CMod ) )
8 nmoleub2.t . 2  |-  ( ph  ->  T  e.  (NrmMod  i^i CMod ) )
9 nmoleub2.f . 2  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
10 nmoleub2.a . 2  |-  ( ph  ->  A  e.  RR* )
11 nmoleub2.r . 2  |-  ( ph  ->  R  e.  RR+ )
12 lmghm 17134 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
13 eqid 2443 . . . . . . . . . 10  |-  ( 0g
`  S )  =  ( 0g `  S
)
14 eqid 2443 . . . . . . . . . 10  |-  ( 0g
`  T )  =  ( 0g `  T
)
1513, 14ghmid 15774 . . . . . . . . 9  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
169, 12, 153syl 20 . . . . . . . 8  |-  ( ph  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T ) )
1716fveq2d 5716 . . . . . . 7  |-  ( ph  ->  ( M `  ( F `  ( 0g `  S ) ) )  =  ( M `  ( 0g `  T ) ) )
18 inss1 3591 . . . . . . . . 9  |-  (NrmMod  i^i CMod ) 
C_ NrmMod
1918, 8sseldi 3375 . . . . . . . 8  |-  ( ph  ->  T  e. NrmMod )
20 nlmngp 20280 . . . . . . . 8  |-  ( T  e. NrmMod  ->  T  e. NrmGrp )
214, 14nm0 20240 . . . . . . . 8  |-  ( T  e. NrmGrp  ->  ( M `  ( 0g `  T ) )  =  0 )
2219, 20, 213syl 20 . . . . . . 7  |-  ( ph  ->  ( M `  ( 0g `  T ) )  =  0 )
2317, 22eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( M `  ( F `  ( 0g `  S ) ) )  =  0 )
2423adantr 465 . . . . 5  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( M `  ( F `  ( 0g `  S ) ) )  =  0 )
2524oveq1d 6127 . . . 4  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( ( M `  ( F `  ( 0g
`  S ) ) )  /  R )  =  ( 0  /  R ) )
2611adantr 465 . . . . . 6  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  ->  R  e.  RR+ )
2726rpcnd 11050 . . . . 5  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  ->  R  e.  CC )
2826rpne0d 11053 . . . . 5  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  ->  R  =/=  0 )
2927, 28div0d 10127 . . . 4  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( 0  /  R
)  =  0 )
3025, 29eqtrd 2475 . . 3  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( ( M `  ( F `  ( 0g
`  S ) ) )  /  R )  =  0 )
3118, 7sseldi 3375 . . . . . . 7  |-  ( ph  ->  S  e. NrmMod )
32 nlmngp 20280 . . . . . . 7  |-  ( S  e. NrmMod  ->  S  e. NrmGrp )
3331, 32syl 16 . . . . . 6  |-  ( ph  ->  S  e. NrmGrp )
34 ngpgrp 20213 . . . . . 6  |-  ( S  e. NrmGrp  ->  S  e.  Grp )
352, 13grpidcl 15587 . . . . . 6  |-  ( S  e.  Grp  ->  ( 0g `  S )  e.  V )
3633, 34, 353syl 20 . . . . 5  |-  ( ph  ->  ( 0g `  S
)  e.  V )
3736adantr 465 . . . 4  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( 0g `  S
)  e.  V )
382, 3nmcl 20229 . . . . . . . . 9  |-  ( ( S  e. NrmGrp  /\  x  e.  V )  ->  ( L `  x )  e.  RR )
3933, 38sylan 471 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( L `  x )  e.  RR )
4011adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  RR+ )
4140rpred 11048 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  RR )
42 nmoleub2lem2.7 . . . . . . . 8  |-  ( ( ( L `  x
)  e.  RR  /\  R  e.  RR )  ->  ( ( L `  x )  <  R  ->  ( L `  x
) O R ) )
4339, 41, 42syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
( L `  x
)  <  R  ->  ( L `  x ) O R ) )
4443imim1d 75 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
)  ->  ( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A
) ) )
4544ralimdva 2815 . . . . 5  |-  ( ph  ->  ( A. x  e.  V  ( ( L `
 x ) O R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A
)  ->  A. x  e.  V  ( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A
) ) )
4645imp 429 . . . 4  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  ->  A. x  e.  V  ( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A ) )
473, 13nm0 20240 . . . . . . 7  |-  ( S  e. NrmGrp  ->  ( L `  ( 0g `  S ) )  =  0 )
4831, 32, 473syl 20 . . . . . 6  |-  ( ph  ->  ( L `  ( 0g `  S ) )  =  0 )
4948adantr 465 . . . . 5  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( L `  ( 0g `  S ) )  =  0 )
5026rpgt0d 11051 . . . . 5  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
0  <  R )
5149, 50eqbrtrd 4333 . . . 4  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( L `  ( 0g `  S ) )  <  R )
52 fveq2 5712 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  ( L `  x )  =  ( L `  ( 0g `  S ) ) )
5352breq1d 4323 . . . . . 6  |-  ( x  =  ( 0g `  S )  ->  (
( L `  x
)  <  R  <->  ( L `  ( 0g `  S
) )  <  R
) )
54 fveq2 5712 . . . . . . . . 9  |-  ( x  =  ( 0g `  S )  ->  ( F `  x )  =  ( F `  ( 0g `  S ) ) )
5554fveq2d 5716 . . . . . . . 8  |-  ( x  =  ( 0g `  S )  ->  ( M `  ( F `  x ) )  =  ( M `  ( F `  ( 0g `  S ) ) ) )
5655oveq1d 6127 . . . . . . 7  |-  ( x  =  ( 0g `  S )  ->  (
( M `  ( F `  x )
)  /  R )  =  ( ( M `
 ( F `  ( 0g `  S ) ) )  /  R
) )
5756breq1d 4323 . . . . . 6  |-  ( x  =  ( 0g `  S )  ->  (
( ( M `  ( F `  x ) )  /  R )  <_  A  <->  ( ( M `  ( F `  ( 0g `  S
) ) )  /  R )  <_  A
) )
5853, 57imbi12d 320 . . . . 5  |-  ( x  =  ( 0g `  S )  ->  (
( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A )  <->  ( ( L `  ( 0g `  S ) )  < 
R  ->  ( ( M `  ( F `  ( 0g `  S
) ) )  /  R )  <_  A
) ) )
5958rspcv 3090 . . . 4  |-  ( ( 0g `  S )  e.  V  ->  ( A. x  e.  V  ( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A )  -> 
( ( L `  ( 0g `  S ) )  <  R  -> 
( ( M `  ( F `  ( 0g
`  S ) ) )  /  R )  <_  A ) ) )
6037, 46, 51, 59syl3c 61 . . 3  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
( ( M `  ( F `  ( 0g
`  S ) ) )  /  R )  <_  A )
6130, 60eqbrtrrd 4335 . 2  |-  ( (
ph  /\  A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `  ( F `
 x ) )  /  R )  <_  A ) )  -> 
0  <_  A )
62 simp-4l 765 . . . . 5  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  ph )
6362, 7syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  S  e.  (NrmMod  i^i CMod ) )
6462, 8syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  T  e.  (NrmMod  i^i CMod ) )
6562, 9syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  F  e.  ( S LMHom  T ) )
6662, 10syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  A  e.  RR* )
6762, 11syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  R  e.  RR+ )
68 nmoleub2a.5 . . . . 5  |-  ( ph  ->  QQ  C_  K )
6962, 68syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  QQ  C_  K )
70 eqid 2443 . . . 4  |-  ( .s
`  S )  =  ( .s `  S
)
71 simpllr 758 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  A  e.  RR )
7261ad3antrrr 729 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  0  <_  A )
73 simplrl 759 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  y  e.  V )
74 simplrr 760 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  y  =/=  ( 0g `  S
) )
7546ad3antrrr 729 . . . . 5  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  A. x  e.  V  ( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A
) )
76 fveq2 5712 . . . . . . . 8  |-  ( x  =  ( z ( .s `  S ) y )  ->  ( L `  x )  =  ( L `  ( z ( .s
`  S ) y ) ) )
7776breq1d 4323 . . . . . . 7  |-  ( x  =  ( z ( .s `  S ) y )  ->  (
( L `  x
)  <  R  <->  ( L `  ( z ( .s
`  S ) y ) )  <  R
) )
78 fveq2 5712 . . . . . . . . . 10  |-  ( x  =  ( z ( .s `  S ) y )  ->  ( F `  x )  =  ( F `  ( z ( .s
`  S ) y ) ) )
7978fveq2d 5716 . . . . . . . . 9  |-  ( x  =  ( z ( .s `  S ) y )  ->  ( M `  ( F `  x ) )  =  ( M `  ( F `  ( z
( .s `  S
) y ) ) ) )
8079oveq1d 6127 . . . . . . . 8  |-  ( x  =  ( z ( .s `  S ) y )  ->  (
( M `  ( F `  x )
)  /  R )  =  ( ( M `
 ( F `  ( z ( .s
`  S ) y ) ) )  /  R ) )
8180breq1d 4323 . . . . . . 7  |-  ( x  =  ( z ( .s `  S ) y )  ->  (
( ( M `  ( F `  x ) )  /  R )  <_  A  <->  ( ( M `  ( F `  ( z ( .s
`  S ) y ) ) )  /  R )  <_  A
) )
8277, 81imbi12d 320 . . . . . 6  |-  ( x  =  ( z ( .s `  S ) y )  ->  (
( ( L `  x )  <  R  ->  ( ( M `  ( F `  x ) )  /  R )  <_  A )  <->  ( ( L `  ( z
( .s `  S
) y ) )  <  R  ->  (
( M `  ( F `  ( z
( .s `  S
) y ) ) )  /  R )  <_  A ) ) )
8382rspccv 3091 . . . . 5  |-  ( A. x  e.  V  (
( L `  x
)  <  R  ->  ( ( M `  ( F `  x )
)  /  R )  <_  A )  -> 
( ( z ( .s `  S ) y )  e.  V  ->  ( ( L `  ( z ( .s
`  S ) y ) )  <  R  ->  ( ( M `  ( F `  ( z ( .s `  S
) y ) ) )  /  R )  <_  A ) ) )
8475, 83syl 16 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  (
( z ( .s
`  S ) y )  e.  V  -> 
( ( L `  ( z ( .s
`  S ) y ) )  <  R  ->  ( ( M `  ( F `  ( z ( .s `  S
) y ) ) )  /  R )  <_  A ) ) )
85 simpr 461 . . . 4  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )  ->  -.  ( M `  ( F `
 y ) )  <_  ( A  x.  ( L `  y ) ) )
861, 2, 3, 4, 5, 6, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 84, 85nmoleub2lem3 20692 . . 3  |-  -.  (
( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) )
87 iman 424 . . 3  |-  ( ( ( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  ->  ( M `  ( F `  y ) )  <_  ( A  x.  ( L `  y
) ) )  <->  -.  (
( ( ( ph  /\ 
A. x  e.  V  ( ( L `  x ) O R  ->  ( ( M `
 ( F `  x ) )  /  R )  <_  A
) )  /\  A  e.  RR )  /\  (
y  e.  V  /\  y  =/=  ( 0g `  S ) ) )  /\  -.  ( M `
 ( F `  y ) )  <_ 
( A  x.  ( L `  y )
) ) )
8886, 87mpbir 209 . 2  |-  ( ( ( ( ph  /\  A. x  e.  V  ( ( L `  x
) O R  -> 
( ( M `  ( F `  x ) )  /  R )  <_  A ) )  /\  A  e.  RR )  /\  ( y  e.  V  /\  y  =/=  ( 0g `  S
) ) )  -> 
( M `  ( F `  y )
)  <_  ( A  x.  ( L `  y
) ) )
89 nmoleub2lem2.6 . . 3  |-  ( ( ( L `  x
)  e.  RR  /\  R  e.  RR )  ->  ( ( L `  x ) O R  ->  ( L `  x )  <_  R
) )
9039, 41, 89syl2anc 661 . 2  |-  ( (
ph  /\  x  e.  V )  ->  (
( L `  x
) O R  -> 
( L `  x
)  <_  R )
)
911, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 61, 88, 90nmoleub2lem 20691 1  |-  ( ph  ->  ( ( N `  F )  <_  A  <->  A. x  e.  V  ( ( L `  x
) O R  -> 
( ( M `  ( F `  x ) )  /  R )  <_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736    i^i cin 3348    C_ wss 3349   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   RRcr 9302   0cc0 9303    x. cmul 9308   RR*cxr 9438    < clt 9439    <_ cle 9440    / cdiv 10014   QQcq 10974   RR+crp 11012   Basecbs 14195  Scalarcsca 14262   .scvsca 14263   0gc0g 14399   Grpcgrp 15431    GrpHom cghm 15765   LMHom clmhm 17122   normcnm 20191  NrmGrpcngp 20192  NrmModcnlm 20195   normOpcnmo 20306  CModcclm 20656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ico 11327  df-fz 11459  df-seq 11828  df-exp 11887  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-0g 14401  df-topgen 14403  df-mnd 15436  df-grp 15566  df-subg 15699  df-ghm 15766  df-cmn 16300  df-mgp 16614  df-rng 16669  df-cring 16670  df-subrg 16885  df-lmod 16972  df-lmhm 17125  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-xms 19917  df-ms 19918  df-nm 20197  df-ngp 20198  df-nlm 20201  df-nmo 20309  df-nghm 20310  df-clm 20657
This theorem is referenced by:  nmoleub2a  20694  nmoleub2b  20695
  Copyright terms: Public domain W3C validator