MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustfbas Structured version   Visualization version   GIF version

Theorem metustfbas 22172
Description: The filter base generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustfbas ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metustfbas
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustel 22165 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎))))
3 simpr 476 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → 𝑥 = (𝐷 “ (0[,)𝑎)))
4 cnvimass 5404 . . . . . . . . . 10 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
5 psmetf 21921 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
6 fdm 5964 . . . . . . . . . . . 12 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
75, 6syl 17 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
87adantr 480 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → dom 𝐷 = (𝑋 × 𝑋))
94, 8syl5sseq 3616 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
103, 9eqsstrd 3602 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 = (𝐷 “ (0[,)𝑎))) → 𝑥 ⊆ (𝑋 × 𝑋))
1110ex 449 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝑥 = (𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋)))
1211rexlimdvw 3016 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)) → 𝑥 ⊆ (𝑋 × 𝑋)))
132, 12sylbid 229 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝐹𝑥 ⊆ (𝑋 × 𝑋)))
1413ralrimiv 2948 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝐹 𝑥 ⊆ (𝑋 × 𝑋))
15 pwssb 4548 . . . 4 (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ↔ ∀𝑥𝐹 𝑥 ⊆ (𝑋 × 𝑋))
1614, 15sylibr 223 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
1716adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
18 cnvexg 7005 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
19 imaexg 6995 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (0[,)1)) ∈ V)
20 elisset 3188 . . . . . . 7 ((𝐷 “ (0[,)1)) ∈ V → ∃𝑥 𝑥 = (𝐷 “ (0[,)1)))
21 1rp 11712 . . . . . . . . 9 1 ∈ ℝ+
22 oveq2 6557 . . . . . . . . . . . 12 (𝑎 = 1 → (0[,)𝑎) = (0[,)1))
2322imaeq2d 5385 . . . . . . . . . . 11 (𝑎 = 1 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)1)))
2423eqeq2d 2620 . . . . . . . . . 10 (𝑎 = 1 → (𝑥 = (𝐷 “ (0[,)𝑎)) ↔ 𝑥 = (𝐷 “ (0[,)1))))
2524rspcev 3282 . . . . . . . . 9 ((1 ∈ ℝ+𝑥 = (𝐷 “ (0[,)1))) → ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2621, 25mpan 702 . . . . . . . 8 (𝑥 = (𝐷 “ (0[,)1)) → ∃𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2726eximi 1752 . . . . . . 7 (∃𝑥 𝑥 = (𝐷 “ (0[,)1)) → ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
2818, 19, 20, 274syl 19 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎)))
292exbidv 1837 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑥 𝑥𝐹 ↔ ∃𝑥𝑎 ∈ ℝ+ 𝑥 = (𝐷 “ (0[,)𝑎))))
3028, 29mpbird 246 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 𝑥𝐹)
3130adantl 481 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 𝑥𝐹)
32 n0 3890 . . . 4 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
3331, 32sylibr 223 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ≠ ∅)
341metustid 22169 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ⊆ 𝑥)
3534adantll 746 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ⊆ 𝑥)
36 n0 3890 . . . . . . . . . 10 (𝑋 ≠ ∅ ↔ ∃𝑝 𝑝𝑋)
3736biimpi 205 . . . . . . . . 9 (𝑋 ≠ ∅ → ∃𝑝 𝑝𝑋)
3837adantr 480 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑝 𝑝𝑋)
39 opelresi 5328 . . . . . . . . . . 11 (𝑝𝑋 → (⟨𝑝, 𝑝⟩ ∈ ( I ↾ 𝑋) ↔ 𝑝𝑋))
4039ibir 256 . . . . . . . . . 10 (𝑝𝑋 → ⟨𝑝, 𝑝⟩ ∈ ( I ↾ 𝑋))
41 ne0i 3880 . . . . . . . . . 10 (⟨𝑝, 𝑝⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
4240, 41syl 17 . . . . . . . . 9 (𝑝𝑋 → ( I ↾ 𝑋) ≠ ∅)
4342exlimiv 1845 . . . . . . . 8 (∃𝑝 𝑝𝑋 → ( I ↾ 𝑋) ≠ ∅)
4438, 43syl 17 . . . . . . 7 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ( I ↾ 𝑋) ≠ ∅)
4544adantr 480 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → ( I ↾ 𝑋) ≠ ∅)
46 ssn0 3928 . . . . . 6 ((( I ↾ 𝑋) ⊆ 𝑥 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑥 ≠ ∅)
4735, 45, 46syl2anc 691 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ≠ ∅)
4847nelrdva 3384 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ¬ ∅ ∈ 𝐹)
49 df-nel 2783 . . . 4 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
5048, 49sylibr 223 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∅ ∉ 𝐹)
51 df-ss 3554 . . . . . . . . 9 (𝑥𝑦 ↔ (𝑥𝑦) = 𝑥)
5251biimpi 205 . . . . . . . 8 (𝑥𝑦 → (𝑥𝑦) = 𝑥)
5352adantl 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → (𝑥𝑦) = 𝑥)
54 simplrl 796 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → 𝑥𝐹)
5553, 54eqeltrd 2688 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑥𝑦) → (𝑥𝑦) ∈ 𝐹)
56 sseqin2 3779 . . . . . . . . 9 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑦)
5756biimpi 205 . . . . . . . 8 (𝑦𝑥 → (𝑥𝑦) = 𝑦)
5857adantl 481 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → (𝑥𝑦) = 𝑦)
59 simplrr 797 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → 𝑦𝐹)
6058, 59eqeltrd 2688 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) ∧ 𝑦𝑥) → (𝑥𝑦) ∈ 𝐹)
61 simplr 788 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝐷 ∈ (PsMet‘𝑋))
62 simprl 790 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝑥𝐹)
63 simprr 792 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → 𝑦𝐹)
641metustto 22168 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦𝑦𝑥))
6561, 62, 63, 64syl3anc 1318 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦𝑦𝑥))
6655, 60, 65mpjaodan 823 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
67 vex 3176 . . . . . . . . 9 𝑥 ∈ V
6867inex1 4727 . . . . . . . 8 (𝑥𝑦) ∈ V
6968pwid 4122 . . . . . . 7 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
7069a1i 11 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝒫 (𝑥𝑦))
7170elpwid 4118 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ⊆ (𝑥𝑦))
72 sseq1 3589 . . . . . 6 (𝑧 = (𝑥𝑦) → (𝑧 ⊆ (𝑥𝑦) ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
7372rspcev 3282 . . . . 5 (((𝑥𝑦) ∈ 𝐹 ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
7466, 71, 73syl2anc 691 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑥𝐹𝑦𝐹)) → ∃𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
7574ralrimivva 2954 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦))
7633, 50, 753jca 1235 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))
77 elfvex 6131 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
7877adantl 481 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
79 xpexg 6858 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
8078, 78, 79syl2anc 691 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ V)
81 isfbas2 21449 . . 3 ((𝑋 × 𝑋) ∈ V → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
8280, 81syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝐹 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ (𝑥𝑦)))))
8317, 76, 82mpbir2and 959 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  cop 4131  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  *cxr 9952  +crp 11708  [,)cico 12048  PsMetcpsmet 19551  fBascfbas 19555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-rp 11709  df-ico 12052  df-psmet 19559  df-fbas 19564
This theorem is referenced by:  metust  22173  cfilucfil  22174  metuel  22179  psmetutop  22182  restmetu  22185  metucn  22186
  Copyright terms: Public domain W3C validator