Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version |
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 4547 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissb 4405 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
3 | 1, 2 | bitri 263 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∀wral 2896 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-v 3175 df-in 3547 df-ss 3554 df-pw 4110 df-uni 4373 |
This theorem is referenced by: ustuni 21840 metustfbas 22172 dmvlsiga 29519 1stmbfm 29649 2ndmbfm 29650 dya2iocucvr 29673 gneispace 37452 |
Copyright terms: Public domain | W3C validator |