Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelrdva | Structured version Visualization version GIF version |
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
Ref | Expression |
---|---|
nelrdva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) |
Ref | Expression |
---|---|
nelrdva | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 = 𝐵) | |
2 | eleq1 2676 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
3 | 2 | anbi2d 736 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝐵 ∈ 𝐴))) |
4 | neeq1 2844 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≠ 𝐵 ↔ 𝐵 ≠ 𝐵)) | |
5 | 3, 4 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐵 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) ↔ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵))) |
6 | nelrdva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝐵) | |
7 | 5, 6 | vtoclg 3239 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵)) |
8 | 7 | anabsi7 856 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≠ 𝐵) |
9 | 8 | neneqd 2787 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 = 𝐵) |
10 | 1, 9 | pm2.65da 598 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ne 2782 df-v 3175 |
This theorem is referenced by: ustfilxp 21826 metustfbas 22172 fourierdlem72 39071 |
Copyright terms: Public domain | W3C validator |