Step | Hyp | Ref
| Expression |
1 | | elfvex 6131 |
. . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) |
2 | | isust 21817 |
. . . . . . 7
⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
4 | 3 | ibi 255 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
5 | 4 | adantl 481 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
6 | 5 | simp1d 1066 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) |
7 | 5 | simp2d 1067 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑋 × 𝑋) ∈ 𝑈) |
8 | | ne0i 3880 |
. . . . 5
⊢ ((𝑋 × 𝑋) ∈ 𝑈 → 𝑈 ≠ ∅) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ≠ ∅) |
10 | 5 | simp3d 1068 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
11 | 10 | r19.21bi 2916 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
12 | 11 | simp3d 1068 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) |
13 | 12 | simp1d 1066 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑣) |
14 | | vex 3176 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ V |
15 | | opelresi 5328 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ V → (〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) ↔ 𝑤 ∈ 𝑋)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) ↔ 𝑤 ∈ 𝑋) |
17 | 16 | biimpri 217 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑋 → 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
18 | 17 | rgen 2906 |
. . . . . . . . . 10
⊢
∀𝑤 ∈
𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) |
19 | | r19.2z 4012 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧
∀𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) → ∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
20 | 18, 19 | mpan2 703 |
. . . . . . . . 9
⊢ (𝑋 ≠ ∅ →
∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
21 | 20 | ad2antrr 758 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋)) |
22 | | ne0i 3880 |
. . . . . . . . 9
⊢
(〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅) |
23 | 22 | rexlimivw 3011 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝑋 〈𝑤, 𝑤〉 ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅) |
24 | 21, 23 | syl 17 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ( I ↾ 𝑋) ≠ ∅) |
25 | | ssn0 3928 |
. . . . . . 7
⊢ ((( I
↾ 𝑋) ⊆ 𝑣 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑣 ≠ ∅) |
26 | 13, 24, 25 | syl2anc 691 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → 𝑣 ≠ ∅) |
27 | 26 | nelrdva 3384 |
. . . . 5
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ¬ ∅ ∈
𝑈) |
28 | | df-nel 2783 |
. . . . 5
⊢ (∅
∉ 𝑈 ↔ ¬
∅ ∈ 𝑈) |
29 | 27, 28 | sylibr 223 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∅ ∉ 𝑈) |
30 | 11 | simp2d 1067 |
. . . . . . . . 9
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈) |
31 | 30 | r19.21bi 2916 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ 𝑈) |
32 | 14 | inex2 4728 |
. . . . . . . . . 10
⊢ (𝑣 ∩ 𝑤) ∈ V |
33 | 32 | pwid 4122 |
. . . . . . . . 9
⊢ (𝑣 ∩ 𝑤) ∈ 𝒫 (𝑣 ∩ 𝑤) |
34 | 33 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ 𝒫 (𝑣 ∩ 𝑤)) |
35 | 31, 34 | elind 3760 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑣 ∩ 𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤))) |
36 | | ne0i 3880 |
. . . . . . 7
⊢ ((𝑣 ∩ 𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) → (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
37 | 35, 36 | syl 17 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
38 | 37 | ralrimiva 2949 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
39 | 38 | ralrimiva 2949 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
40 | 9, 29, 39 | 3jca 1235 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)) |
41 | | xpexg 6858 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V) |
42 | 1, 1, 41 | syl2anc 691 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ V) |
43 | | isfbas 21443 |
. . . . 5
⊢ ((𝑋 × 𝑋) ∈ V → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
44 | 42, 43 | syl 17 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
45 | 44 | adantl 481 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣 ∈ 𝑈 ∀𝑤 ∈ 𝑈 (𝑈 ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅)))) |
46 | 6, 40, 45 | mpbir2and 959 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (fBas‘(𝑋 × 𝑋))) |
47 | | n0 3890 |
. . . . 5
⊢ ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔
∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤)) |
48 | | elin 3758 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤)) |
49 | | selpw 4115 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝒫 𝑤 ↔ 𝑣 ⊆ 𝑤) |
50 | 49 | anbi2i 726 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
51 | 48, 50 | bitri 263 |
. . . . . 6
⊢ (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
52 | 51 | exbii 1764 |
. . . . 5
⊢
(∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
53 | 47, 52 | bitri 263 |
. . . 4
⊢ ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔
∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤)) |
54 | 11 | simp1d 1066 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
55 | 54 | r19.21bi 2916 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
56 | 55 | an32s 842 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣 ∈ 𝑈) → (𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈)) |
57 | 56 | expimpd 627 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ 𝑈)) |
58 | 57 | exlimdv 1848 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤) → 𝑤 ∈ 𝑈)) |
59 | 53, 58 | syl5bi 231 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈)) |
60 | 59 | ralrimiva 2949 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈)) |
61 | | isfil 21461 |
. 2
⊢ (𝑈 ∈ (Fil‘(𝑋 × 𝑋)) ↔ (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤 ∈ 𝑈))) |
62 | 46, 60, 61 | sylanbrc 695 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋))) |