MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmlub Structured version   Visualization version   GIF version

Theorem lsmlub 17901
Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmlub ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈𝑇𝑈) ↔ (𝑆 𝑇) ⊆ 𝑈))

Proof of Theorem lsmlub
StepHypRef Expression
1 simp3 1056 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ∈ (SubGrp‘𝐺))
2 lsmub1.p . . . . . 6 = (LSSum‘𝐺)
32lsmless12 17899 . . . . 5 (((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑆𝑈𝑇𝑈)) → (𝑆 𝑇) ⊆ (𝑈 𝑈))
43ex 449 . . . 4 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑈 𝑈)))
51, 1, 4syl2anc 691 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑈 𝑈)))
62lsmidm 17900 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 𝑈) = 𝑈)
763ad2ant3 1077 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 𝑈) = 𝑈)
87sseq2d 3596 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 𝑇) ⊆ (𝑈 𝑈) ↔ (𝑆 𝑇) ⊆ 𝑈))
95, 8sylibd 228 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈𝑇𝑈) → (𝑆 𝑇) ⊆ 𝑈))
102lsmub1 17894 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑇))
11103adant3 1074 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑇))
12 sstr2 3575 . . . 4 (𝑆 ⊆ (𝑆 𝑇) → ((𝑆 𝑇) ⊆ 𝑈𝑆𝑈))
1311, 12syl 17 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 𝑇) ⊆ 𝑈𝑆𝑈))
142lsmub2 17895 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 𝑇))
15143adant3 1074 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 𝑇))
16 sstr2 3575 . . . 4 (𝑇 ⊆ (𝑆 𝑇) → ((𝑆 𝑇) ⊆ 𝑈𝑇𝑈))
1715, 16syl 17 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 𝑇) ⊆ 𝑈𝑇𝑈))
1813, 17jcad 554 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 𝑇) ⊆ 𝑈 → (𝑆𝑈𝑇𝑈)))
199, 18impbid 201 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈𝑇𝑈) ↔ (𝑆 𝑇) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  cfv 5804  (class class class)co 6549  SubGrpcsubg 17411  LSSumclsm 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-lsm 17874
This theorem is referenced by:  lsmss1  17902  lsmss2  17904  lsmmod  17911  lsmcntz  17915  dprd2da  18264  dmdprdsplit2lem  18267  dprdsplit  18270  pgpfac1lem1  18296  lsmsp  18907  lspprabs  18916  lsmcv  18962  lrelat  33319  lsatexch  33348  lsatcvatlem  33354  lsatcvat  33355  dihjustlem  35523  dihord1  35525  dihord5apre  35569  lclkrlem2f  35819  lclkrlem2v  35835  lclkrslem2  35845  lcfrlem25  35874  lcfrlem35  35884  mapdlsm  35971  lspindp5  36077
  Copyright terms: Public domain W3C validator