Step | Hyp | Ref
| Expression |
1 | | lnopunilem1.5 |
. . . 4
⊢ 𝐶 ∈ ℂ |
2 | | lnopunilem.3 |
. . . . . 6
⊢ 𝐴 ∈ ℋ |
3 | | lnopunilem.1 |
. . . . . . . 8
⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopfi 28212 |
. . . . . . 7
⊢ 𝑇: ℋ⟶
ℋ |
5 | 4 | ffvelrni 6266 |
. . . . . 6
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
6 | 2, 5 | ax-mp 5 |
. . . . 5
⊢ (𝑇‘𝐴) ∈ ℋ |
7 | | lnopunilem.4 |
. . . . . 6
⊢ 𝐵 ∈ ℋ |
8 | 4 | ffvelrni 6266 |
. . . . . 6
⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ (𝑇‘𝐵) ∈ ℋ |
10 | 6, 9 | hicli 27322 |
. . . 4
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) ∈ ℂ |
11 | 1, 10 | mulcli 9924 |
. . 3
⊢ (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) ∈ ℂ |
12 | | reval 13694 |
. . 3
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) ∈ ℂ →
(ℜ‘(𝐶 ·
((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2)) |
13 | 11, 12 | ax-mp 5 |
. 2
⊢
(ℜ‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) |
14 | 2, 7 | hicli 27322 |
. . . . 5
⊢ (𝐴
·ih 𝐵) ∈ ℂ |
15 | 1, 14 | mulcli 9924 |
. . . 4
⊢ (𝐶 · (𝐴 ·ih 𝐵)) ∈
ℂ |
16 | | reval 13694 |
. . . 4
⊢ ((𝐶 · (𝐴 ·ih 𝐵)) ∈ ℂ →
(ℜ‘(𝐶 ·
(𝐴
·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2)) |
17 | 15, 16 | ax-mp 5 |
. . 3
⊢
(ℜ‘(𝐶
· (𝐴
·ih 𝐵))) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2) |
18 | | lnopunilem.2 |
. . . . . . . . . . . . 13
⊢
∀𝑥 ∈
ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) |
19 | | fveq2 6103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑇‘𝑥) = (𝑇‘𝑦)) |
20 | 19 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (normℎ‘(𝑇‘𝑥)) = (normℎ‘(𝑇‘𝑦))) |
21 | | fveq2 6103 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (normℎ‘𝑥) =
(normℎ‘𝑦)) |
22 | 20, 21 | eqeq12d 2625 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 →
((normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ↔
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦))) |
23 | 22 | cbvralv 3147 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ↔ ∀𝑦 ∈ ℋ
(normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦)) |
24 | 18, 23 | mpbi 219 |
. . . . . . . . . . . 12
⊢
∀𝑦 ∈
ℋ (normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) |
25 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) →
((normℎ‘(𝑇‘𝑦))↑2) =
((normℎ‘𝑦)↑2)) |
26 | 4 | ffvelrni 6266 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
27 | | normsq 27375 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇‘𝑦) ∈ ℋ →
((normℎ‘(𝑇‘𝑦))↑2) = ((𝑇‘𝑦) ·ih (𝑇‘𝑦))) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℋ →
((normℎ‘(𝑇‘𝑦))↑2) = ((𝑇‘𝑦) ·ih (𝑇‘𝑦))) |
29 | | normsq 27375 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℋ →
((normℎ‘𝑦)↑2) = (𝑦 ·ih 𝑦)) |
30 | 28, 29 | eqeq12d 2625 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℋ →
(((normℎ‘(𝑇‘𝑦))↑2) =
((normℎ‘𝑦)↑2) ↔ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦))) |
31 | 25, 30 | syl5ib 233 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℋ →
((normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦))) |
32 | 31 | ralimia 2934 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
ℋ (normℎ‘(𝑇‘𝑦)) = (normℎ‘𝑦) → ∀𝑦 ∈ ℋ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦)) |
33 | 24, 32 | ax-mp 5 |
. . . . . . . . . . 11
⊢
∀𝑦 ∈
ℋ ((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) |
34 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) |
35 | 34, 34 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) |
36 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
37 | 36, 36 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 ·ih 𝑦) = (𝐴 ·ih 𝐴)) |
38 | 35, 37 | eqeq12d 2625 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴))) |
39 | 38 | rspcv 3278 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ →
(∀𝑦 ∈ ℋ
((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴))) |
40 | 2, 33, 39 | mp2 9 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) = (𝐴 ·ih 𝐴) |
41 | 40 | oveq2i 6560 |
. . . . . . . . 9
⊢
((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)) |
42 | 41 | oveq2i 6560 |
. . . . . . . 8
⊢ (𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) = (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) |
43 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) |
44 | 43, 43 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
45 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
46 | 45, 45 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦 ·ih 𝑦) = (𝐵 ·ih 𝐵)) |
47 | 44, 46 | eqeq12d 2625 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵))) |
48 | 47 | rspcv 3278 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℋ →
(∀𝑦 ∈ ℋ
((𝑇‘𝑦)
·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵))) |
49 | 7, 33, 48 | mp2 9 |
. . . . . . . 8
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) = (𝐵 ·ih 𝐵) |
50 | 42, 49 | oveq12i 6561 |
. . . . . . 7
⊢ ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) |
51 | 50 | oveq1i 6559 |
. . . . . 6
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) |
52 | 1 | cjcli 13757 |
. . . . . . . . . 10
⊢
(∗‘𝐶)
∈ ℂ |
53 | 6, 6 | hicli 27322 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐴)) ∈ ℂ |
54 | 52, 53 | mulcli 9924 |
. . . . . . . . 9
⊢
((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) ∈ ℂ |
55 | 1, 54 | mulcli 9924 |
. . . . . . . 8
⊢ (𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) ∈ ℂ |
56 | 9, 9 | hicli 27322 |
. . . . . . . 8
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐵)) ∈ ℂ |
57 | 11 | cjcli 13757 |
. . . . . . . 8
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) ∈ ℂ |
58 | 55, 56, 11, 57 | add42i 10140 |
. . . . . . 7
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
59 | 2, 2 | hicli 27322 |
. . . . . . . . . . 11
⊢ (𝐴
·ih 𝐴) ∈ ℂ |
60 | 52, 59 | mulcli 9924 |
. . . . . . . . . 10
⊢
((∗‘𝐶)
· (𝐴
·ih 𝐴)) ∈ ℂ |
61 | 1, 60 | mulcli 9924 |
. . . . . . . . 9
⊢ (𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) ∈
ℂ |
62 | 7, 7 | hicli 27322 |
. . . . . . . . 9
⊢ (𝐵
·ih 𝐵) ∈ ℂ |
63 | 15 | cjcli 13757 |
. . . . . . . . 9
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) ∈ ℂ |
64 | 61, 62, 15, 63 | add42i 10140 |
. . . . . . . 8
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
65 | 1, 2 | hvmulcli 27255 |
. . . . . . . . . . . 12
⊢ (𝐶
·ℎ 𝐴) ∈ ℋ |
66 | 65, 7 | hvaddcli 27259 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ |
67 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (𝑇‘𝑦) = (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
68 | 67, 67 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
69 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → 𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) |
70 | 69, 69 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (𝑦 ·ih 𝑦) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
71 | 68, 70 | eqeq12d 2625 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) → (((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) ↔ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
72 | 71 | rspcv 3278 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ → (∀𝑦 ∈ ℋ ((𝑇‘𝑦) ·ih (𝑇‘𝑦)) = (𝑦 ·ih 𝑦) → ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)))) |
73 | 66, 33, 72 | mp2 9 |
. . . . . . . . . 10
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ 𝐴) +ℎ 𝐵)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) |
74 | | ax-his2 27324 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝐶 ·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ) →
(((𝐶
·ℎ 𝐴) +ℎ 𝐵) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)))) |
75 | 65, 7, 66, 74 | mp3an 1416 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ 𝐴) +ℎ 𝐵) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) |
76 | | ax-his3 27325 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ ((𝐶
·ℎ 𝐴) +ℎ 𝐵) ∈ ℋ) → ((𝐶 ·ℎ 𝐴)
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)))) |
77 | 1, 2, 66, 76 | mp3an 1416 |
. . . . . . . . . . . 12
⊢ ((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) |
78 | | his7 27331 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ (𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐴 ·ih (𝐶
·ℎ 𝐴)) + (𝐴 ·ih 𝐵))) |
79 | 2, 65, 7, 78 | mp3an 1416 |
. . . . . . . . . . . . . 14
⊢ (𝐴
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐴 ·ih (𝐶
·ℎ 𝐴)) + (𝐴 ·ih 𝐵)) |
80 | | his5 27327 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴))) |
81 | 1, 2, 2, 80 | mp3an 1416 |
. . . . . . . . . . . . . . 15
⊢ (𝐴
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐴 ·ih 𝐴)) |
82 | 81 | oveq1i 6559 |
. . . . . . . . . . . . . 14
⊢ ((𝐴
·ih (𝐶 ·ℎ 𝐴)) + (𝐴 ·ih 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)) |
83 | 79, 82 | eqtri 2632 |
. . . . . . . . . . . . 13
⊢ (𝐴
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵)) |
84 | 83 | oveq2i 6560 |
. . . . . . . . . . . 12
⊢ (𝐶 · (𝐴 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) = (𝐶 · (((∗‘𝐶) · (𝐴 ·ih 𝐴)) + (𝐴 ·ih 𝐵))) |
85 | 1, 60, 14 | adddii 9929 |
. . . . . . . . . . . 12
⊢ (𝐶 ·
(((∗‘𝐶)
· (𝐴
·ih 𝐴)) + (𝐴 ·ih 𝐵))) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) |
86 | 77, 84, 85 | 3eqtri 2636 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) |
87 | | his7 27331 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℋ ∧ (𝐶
·ℎ 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵)) = ((𝐵 ·ih (𝐶
·ℎ 𝐴)) + (𝐵 ·ih 𝐵))) |
88 | 7, 65, 7, 87 | mp3an 1416 |
. . . . . . . . . . . 12
⊢ (𝐵
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐵 ·ih (𝐶
·ℎ 𝐴)) + (𝐵 ·ih 𝐵)) |
89 | | his5 27327 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴))) |
90 | 1, 7, 2, 89 | mp3an 1416 |
. . . . . . . . . . . . . 14
⊢ (𝐵
·ih (𝐶 ·ℎ 𝐴)) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)) |
91 | 1, 14 | cjmuli 13777 |
. . . . . . . . . . . . . . 15
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) = ((∗‘𝐶) · (∗‘(𝐴
·ih 𝐵))) |
92 | 7, 2 | his1i 27341 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵
·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵)) |
93 | 92 | oveq2i 6560 |
. . . . . . . . . . . . . . 15
⊢
((∗‘𝐶)
· (𝐵
·ih 𝐴)) = ((∗‘𝐶) · (∗‘(𝐴
·ih 𝐵))) |
94 | 91, 93 | eqtr4i 2635 |
. . . . . . . . . . . . . 14
⊢
(∗‘(𝐶
· (𝐴
·ih 𝐵))) = ((∗‘𝐶) · (𝐵 ·ih 𝐴)) |
95 | 90, 94 | eqtr4i 2635 |
. . . . . . . . . . . . 13
⊢ (𝐵
·ih (𝐶 ·ℎ 𝐴)) = (∗‘(𝐶 · (𝐴 ·ih 𝐵))) |
96 | 95 | oveq1i 6559 |
. . . . . . . . . . . 12
⊢ ((𝐵
·ih (𝐶 ·ℎ 𝐴)) + (𝐵 ·ih 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)) |
97 | 88, 96 | eqtri 2632 |
. . . . . . . . . . 11
⊢ (𝐵
·ih ((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵)) |
98 | 86, 97 | oveq12i 6561 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ 𝐴) ·ih
((𝐶
·ℎ 𝐴) +ℎ 𝐵)) + (𝐵 ·ih ((𝐶
·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
99 | 73, 75, 98 | 3eqtrri 2637 |
. . . . . . . . 9
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) = ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) |
100 | 3 | lnopli 28211 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
101 | 1, 2, 7, 100 | mp3an 1416 |
. . . . . . . . . . 11
⊢ (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵)) = ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) |
102 | 101, 101 | oveq12i 6561 |
. . . . . . . . . 10
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) |
103 | 1, 6 | hvmulcli 27255 |
. . . . . . . . . . 11
⊢ (𝐶
·ℎ (𝑇‘𝐴)) ∈ ℋ |
104 | 103, 9 | hvaddcli 27259 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ |
105 | | ax-his2 27324 |
. . . . . . . . . . 11
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ ∧ ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ) → (((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))))) |
106 | 103, 9, 104, 105 | mp3an 1416 |
. . . . . . . . . 10
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
107 | 102, 106 | eqtri 2632 |
. . . . . . . . 9
⊢ ((𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))
·ih (𝑇‘((𝐶 ·ℎ 𝐴) +ℎ 𝐵))) = (((𝐶 ·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
108 | | ax-his3 27325 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ ∧ ((𝐶 ·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)) ∈ ℋ) → ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))))) |
109 | 1, 6, 104, 108 | mp3an 1416 |
. . . . . . . . . . 11
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) |
110 | | his7 27331 |
. . . . . . . . . . . . . 14
⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝐶 ·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
111 | 6, 103, 9, 110 | mp3an 1416 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
112 | | his5 27327 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) |
113 | 1, 6, 6, 112 | mp3an 1416 |
. . . . . . . . . . . . . 14
⊢ ((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) |
114 | 113 | oveq1i 6559 |
. . . . . . . . . . . . 13
⊢ (((𝑇‘𝐴) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) = (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
115 | 111, 114 | eqtri 2632 |
. . . . . . . . . . . 12
⊢ ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
116 | 115 | oveq2i 6560 |
. . . . . . . . . . 11
⊢ (𝐶 · ((𝑇‘𝐴) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) = (𝐶 · (((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
117 | 1, 54, 10 | adddii 9929 |
. . . . . . . . . . 11
⊢ (𝐶 ·
(((∗‘𝐶)
· ((𝑇‘𝐴)
·ih (𝑇‘𝐴))) + ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
118 | 109, 116,
117 | 3eqtri 2636 |
. . . . . . . . . 10
⊢ ((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = ((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
119 | | his7 27331 |
. . . . . . . . . . . 12
⊢ (((𝑇‘𝐵) ∈ ℋ ∧ (𝐶 ·ℎ (𝑇‘𝐴)) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
120 | 9, 103, 9, 119 | mp3an 1416 |
. . . . . . . . . . 11
⊢ ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
121 | | his5 27327 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴)))) |
122 | 1, 9, 6, 121 | mp3an 1416 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴))) |
123 | 1, 10 | cjmuli 13777 |
. . . . . . . . . . . . . 14
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = ((∗‘𝐶) · (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
124 | 9, 6 | his1i 27341 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇‘𝐵) ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵))) |
125 | 124 | oveq2i 6560 |
. . . . . . . . . . . . . 14
⊢
((∗‘𝐶)
· ((𝑇‘𝐵)
·ih (𝑇‘𝐴))) = ((∗‘𝐶) · (∗‘((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
126 | 123, 125 | eqtr4i 2635 |
. . . . . . . . . . . . 13
⊢
(∗‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = ((∗‘𝐶) · ((𝑇‘𝐵) ·ih (𝑇‘𝐴))) |
127 | 122, 126 | eqtr4i 2635 |
. . . . . . . . . . . 12
⊢ ((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) = (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) |
128 | 127 | oveq1i 6559 |
. . . . . . . . . . 11
⊢ (((𝑇‘𝐵) ·ih (𝐶
·ℎ (𝑇‘𝐴))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) = ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
129 | 120, 128 | eqtri 2632 |
. . . . . . . . . 10
⊢ ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) = ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) |
130 | 118, 129 | oveq12i 6561 |
. . . . . . . . 9
⊢ (((𝐶
·ℎ (𝑇‘𝐴)) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵))) + ((𝑇‘𝐵) ·ih
((𝐶
·ℎ (𝑇‘𝐴)) +ℎ (𝑇‘𝐵)))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
131 | 99, 107, 130 | 3eqtrri 2637 |
. . . . . . . 8
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐶 · (𝐴 ·ih 𝐵))) + ((∗‘(𝐶 · (𝐴 ·ih 𝐵))) + (𝐵 ·ih 𝐵))) |
132 | 64, 131 | eqtr4i 2635 |
. . . . . . 7
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) = (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + (𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵)))) |
133 | 58, 132 | eqtr4i 2635 |
. . . . . 6
⊢ (((𝐶 · ((∗‘𝐶) · ((𝑇‘𝐴) ·ih (𝑇‘𝐴)))) + ((𝑇‘𝐵) ·ih (𝑇‘𝐵))) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
134 | 51, 133 | eqtr3i 2634 |
. . . . 5
⊢ (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
135 | 61, 62 | addcli 9923 |
. . . . . 6
⊢ ((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) ∈
ℂ |
136 | 11, 57 | addcli 9923 |
. . . . . 6
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) ∈ ℂ |
137 | 15, 63 | addcli 9923 |
. . . . . 6
⊢ ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) ∈
ℂ |
138 | 135, 136,
137 | addcani 10108 |
. . . . 5
⊢ ((((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))))) = (((𝐶 · ((∗‘𝐶) · (𝐴 ·ih 𝐴))) + (𝐵 ·ih 𝐵)) + ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) ↔ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵))))) |
139 | 134, 138 | mpbi 219 |
. . . 4
⊢ ((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) = ((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) |
140 | 139 | oveq1i 6559 |
. . 3
⊢ (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) = (((𝐶 · (𝐴 ·ih 𝐵)) + (∗‘(𝐶 · (𝐴 ·ih 𝐵)))) / 2) |
141 | 17, 140 | eqtr4i 2635 |
. 2
⊢
(ℜ‘(𝐶
· (𝐴
·ih 𝐵))) = (((𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))) + (∗‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵))))) / 2) |
142 | 13, 141 | eqtr4i 2635 |
1
⊢
(ℜ‘(𝐶
· ((𝑇‘𝐴)
·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) |