MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 18732
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Base‘𝑊)
lmodcom.a + = (+g𝑊)
Assertion
Ref Expression
lmodcom ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1054 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
2 eqid 2610 . . . . . . . . . . 11 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2610 . . . . . . . . . . 11 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2610 . . . . . . . . . . 11 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
52, 3, 4lmod1cl 18713 . . . . . . . . . 10 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
61, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
7 eqid 2610 . . . . . . . . . 10 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
82, 3, 7lmodacl 18697 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
91, 6, 6, 8syl3anc 1318 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
10 simp2 1055 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
11 simp3 1056 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
13 lmodcom.a . . . . . . . . 9 + = (+g𝑊)
14 eqid 2610 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1512, 13, 2, 14, 3lmodvsdi 18709 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
161, 9, 10, 11, 15syl13anc 1320 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1712, 13lmodvacl 18700 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 18710 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋 + 𝑌) ∈ 𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
191, 6, 6, 17, 18syl13anc 1320 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2016, 19eqtr3d 2646 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2112, 13, 2, 14, 3, 7lmodvsdir 18710 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
221, 6, 6, 10, 21syl13anc 1320 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
2312, 2, 14, 4lmodvs1 18714 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
241, 10, 23syl2anc 691 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
2524, 24oveq12d 6567 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2644 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 18710 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
281, 6, 6, 11, 27syl13anc 1320 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
2912, 2, 14, 4lmodvs1 18714 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
301, 11, 29syl2anc 691 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
3130, 30oveq12d 6567 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑌 + 𝑌))
3228, 31eqtrd 2644 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (𝑌 + 𝑌))
3326, 32oveq12d 6567 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
3412, 2, 14, 4lmodvs1 18714 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
351, 17, 34syl2anc 691 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3635, 35oveq12d 6567 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3720, 33, 363eqtr3d 2652 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3812, 13lmodvacl 18700 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1318 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 18701 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉𝑌𝑉𝑌𝑉)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
411, 39, 11, 11, 40syl13anc 1320 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4212, 13lmodass 18701 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉𝑋𝑉𝑌𝑉)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
431, 17, 10, 11, 42syl13anc 1320 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4437, 41, 433eqtr4d 2654 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
45 lmodgrp 18693 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
461, 45syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ Grp)
4712, 13lmodvacl 18700 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
481, 39, 11, 47syl3anc 1318 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
4912, 13lmodvacl 18700 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉𝑋𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1318 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
5112, 13grprcan 17278 . . . . 5 ((𝑊 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝑉 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉𝑌𝑉)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1320 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5344, 52mpbid 221 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
5412, 13lmodass 18701 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑋𝑉𝑌𝑉)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
551, 10, 10, 11, 54syl13anc 1320 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5612, 13lmodass 18701 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑋𝑉)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
571, 10, 11, 10, 56syl13anc 1320 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5853, 55, 573eqtr3d 2652 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
5912, 13lmodvacl 18700 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
60593com23 1263 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 18702 . . 3 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑌 + 𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
621, 17, 60, 10, 61syl13anc 1320 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6358, 62mpbid 221 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  Grpcgrp 17245  1rcur 18324  LModclmod 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688
This theorem is referenced by:  lmodabl  18733  lssvsubcl  18765  lssvancl2  18767  lspsolv  18964  lflsub  33372  lcfrlem21  35870  lcfrlem42  35891  mapdindp4  36030
  Copyright terms: Public domain W3C validator