MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Unicode version

Theorem lmodcom 17013
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v  |-  V  =  ( Base `  W
)
lmodcom.a  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
lmodcom  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 988 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  LMod )
2 eqid 2443 . . . . . . . . . . 11  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2443 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4 eqid 2443 . . . . . . . . . . 11  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
52, 3, 4lmod1cl 16997 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
61, 5syl 16 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
7 eqid 2443 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
82, 3, 7lmodacl 16981 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) )  /\  ( 1r `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )  -> 
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
91, 6, 6, 8syl3anc 1218 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
10 simp2 989 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  X  e.  V )
11 simp3 990 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
12 lmodcom.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
13 lmodcom.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
14 eqid 2443 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
1512, 13, 2, 14, 3lmodvsdi 16993 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
161, 9, 10, 11, 15syl13anc 1220 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) ) )
1712, 13lmodvacl 16984 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
1812, 13, 2, 14, 3, 7lmodvsdir 16994 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( X  .+  Y )  e.  V ) )  ->  ( ( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
191, 6, 6, 17, 18syl13anc 1220 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( X  .+  Y ) )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) ( X 
.+  Y ) ) ) )
2016, 19eqtr3d 2477 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( ( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  .+  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) ) ) )
2112, 13, 2, 14, 3, 7lmodvsdir 16994 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  X  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
221, 6, 6, 10, 21syl13anc 1220 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) X ) ) )
2312, 2, 14, 4lmodvs1 16998 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
241, 10, 23syl2anc 661 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) X )  =  X )
2524, 24oveq12d 6130 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) X ) )  =  ( X  .+  X ) )
2622, 25eqtrd 2475 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  =  ( X  .+  X
) )
2712, 13, 2, 14, 3, 7lmodvsdir 16994 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  ( 1r `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) )  /\  Y  e.  V )
)  ->  ( (
( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
281, 6, 6, 11, 27syl13anc 1220 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) 
.+  ( ( 1r
`  (Scalar `  W )
) ( .s `  W ) Y ) ) )
2912, 2, 14, 4lmodvs1 16998 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
301, 11, 29syl2anc 661 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) Y )  =  Y )
3130, 30oveq12d 6130 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) Y ) )  =  ( Y  .+  Y ) )
3228, 31eqtrd 2475 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y )  =  ( Y  .+  Y
) )
3326, 32oveq12d 6130 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) X )  .+  ( ( ( 1r
`  (Scalar `  W )
) ( +g  `  (Scalar `  W ) ) ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) Y ) )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
3412, 2, 14, 4lmodvs1 16998 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
351, 17, 34syl2anc 661 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) ( X  .+  Y
) )  =  ( X  .+  Y ) )
3635, 35oveq12d 6130 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) )  .+  ( ( 1r `  (Scalar `  W ) ) ( .s `  W
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3720, 33, 363eqtr3d 2483 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
3812, 13lmodvacl 16984 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .+  X )  e.  V )
391, 10, 10, 38syl3anc 1218 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  X )  e.  V )
4012, 13lmodass 16985 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  X
)  e.  V  /\  Y  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  X
)  .+  Y )  .+  Y )  =  ( ( X  .+  X
)  .+  ( Y  .+  Y ) ) )
411, 39, 11, 11, 40syl13anc 1220 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4212, 13lmodass 16985 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( (
( X  .+  Y
)  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  ( X  .+  Y ) ) )
431, 17, 10, 11, 42syl13anc 1220 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4437, 41, 433eqtr4d 2485 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
45 lmodgrp 16977 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Grp )
461, 45syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  W  e.  Grp )
4712, 13lmodvacl 16984 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  X )  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
481, 39, 11, 47syl3anc 1218 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  e.  V )
4912, 13lmodvacl 16984 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( X  .+  Y )  e.  V  /\  X  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
501, 17, 10, 49syl3anc 1218 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  e.  V )
5112, 13grprcan 15592 . . . . 5  |-  ( ( W  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  V  /\  ( ( X  .+  Y )  .+  X
)  e.  V  /\  Y  e.  V )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5246, 48, 50, 11, 51syl13anc 1220 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5344, 52mpbid 210 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
5412, 13lmodass 16985 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( ( X  .+  X )  .+  Y )  =  ( X  .+  ( X 
.+  Y ) ) )
551, 10, 10, 11, 54syl13anc 1220 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5612, 13lmodass 16985 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  X  e.  V )
)  ->  ( ( X  .+  Y )  .+  X )  =  ( X  .+  ( Y 
.+  X ) ) )
571, 10, 11, 10, 56syl13anc 1220 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5853, 55, 573eqtr3d 2483 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
5912, 13lmodvacl 16984 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .+  X )  e.  V )
60593com23 1193 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( Y  .+  X )  e.  V )
6112, 13lmodlcan 16986 . . 3  |-  ( ( W  e.  LMod  /\  (
( X  .+  Y
)  e.  V  /\  ( Y  .+  X )  e.  V  /\  X  e.  V ) )  -> 
( ( X  .+  ( X  .+  Y ) )  =  ( X 
.+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
621, 17, 60, 10, 61syl13anc 1220 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6358, 62mpbid 210 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5439  (class class class)co 6112   Basecbs 14195   +g cplusg 14259  Scalarcsca 14262   .scvsca 14263   Grpcgrp 15431   1rcur 16625   LModclmod 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-plusg 14272  df-0g 14401  df-mnd 15436  df-grp 15566  df-minusg 15567  df-mgp 16614  df-ur 16626  df-rng 16669  df-lmod 16972
This theorem is referenced by:  lmodabl  17014  lssvsubcl  17047  lssvancl2  17049  lspsolv  17246  lflsub  32808  lcfrlem21  35304  lcfrlem42  35325  mapdindp4  35464
  Copyright terms: Public domain W3C validator