MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lly1stc Structured version   Visualization version   GIF version

Theorem lly1stc 21109
Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
lly1stc Locally 1st𝜔 = 1st𝜔

Proof of Theorem lly1stc
Dummy variables 𝑗 𝑎 𝑛 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21085 . . . 4 (𝑗 ∈ Locally 1st𝜔 → 𝑗 ∈ Top)
2 simprr 792 . . . . . . . . 9 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → (𝑗t 𝑢) ∈ 1st𝜔)
3 simprl 790 . . . . . . . . . 10 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → 𝑥𝑢)
41ad3antrrr 762 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → 𝑗 ∈ Top)
5 elssuni 4403 . . . . . . . . . . . 12 (𝑢𝑗𝑢 𝑗)
65ad2antlr 759 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → 𝑢 𝑗)
7 eqid 2610 . . . . . . . . . . . 12 𝑗 = 𝑗
87restuni 20776 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢 𝑗) → 𝑢 = (𝑗t 𝑢))
94, 6, 8syl2anc 691 . . . . . . . . . 10 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → 𝑢 = (𝑗t 𝑢))
103, 9eleqtrd 2690 . . . . . . . . 9 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → 𝑥 (𝑗t 𝑢))
11 eqid 2610 . . . . . . . . . 10 (𝑗t 𝑢) = (𝑗t 𝑢)
12111stcclb 21057 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 1st𝜔 ∧ 𝑥 (𝑗t 𝑢)) → ∃𝑡 ∈ 𝒫 (𝑗t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))
132, 10, 12syl2anc 691 . . . . . . . 8 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → ∃𝑡 ∈ 𝒫 (𝑗t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))
14 elpwi 4117 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ 𝒫 (𝑗t 𝑢) → 𝑡 ⊆ (𝑗t 𝑢))
1514adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑡 ⊆ (𝑗t 𝑢))
1615sselda 3568 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛 ∈ (𝑗t 𝑢))
174adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑗 ∈ Top)
18 simpllr 795 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑢𝑗)
19 restopn2 20791 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑛 ∈ (𝑗t 𝑢) ↔ (𝑛𝑗𝑛𝑢)))
2017, 18, 19syl2anc 691 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (𝑛 ∈ (𝑗t 𝑢) ↔ (𝑛𝑗𝑛𝑢)))
2120simplbda 652 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛 ∈ (𝑗t 𝑢)) → 𝑛𝑢)
2216, 21syldan 486 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛𝑢)
23 df-ss 3554 . . . . . . . . . . . . . . 15 (𝑛𝑢 ↔ (𝑛𝑢) = 𝑛)
2422, 23sylib 207 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑢) = 𝑛)
2520simprbda 651 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛 ∈ (𝑗t 𝑢)) → 𝑛𝑗)
2616, 25syldan 486 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛𝑗)
2724, 26eqeltrd 2688 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑢) ∈ 𝑗)
28 ineq1 3769 . . . . . . . . . . . . . 14 (𝑎 = 𝑛 → (𝑎𝑢) = (𝑛𝑢))
2928cbvmptv 4678 . . . . . . . . . . . . 13 (𝑎𝑡 ↦ (𝑎𝑢)) = (𝑛𝑡 ↦ (𝑛𝑢))
3027, 29fmptd 6292 . . . . . . . . . . . 12 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (𝑎𝑡 ↦ (𝑎𝑢)):𝑡𝑗)
31 frn 5966 . . . . . . . . . . . 12 ((𝑎𝑡 ↦ (𝑎𝑢)):𝑡𝑗 → ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
3230, 31syl 17 . . . . . . . . . . 11 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
3332adantrr 749 . . . . . . . . . 10 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
34 vex 3176 . . . . . . . . . . 11 𝑗 ∈ V
3534elpw2 4755 . . . . . . . . . 10 (ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗 ↔ ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
3633, 35sylibr 223 . . . . . . . . 9 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗)
37 simprrl 800 . . . . . . . . . 10 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → 𝑡 ≼ ω)
38 1stcrestlem 21065 . . . . . . . . . 10 (𝑡 ≼ ω → ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω)
3937, 38syl 17 . . . . . . . . 9 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω)
404ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑗 ∈ Top)
41 simpllr 795 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → 𝑢𝑗)
4241adantr 480 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑢𝑗)
43 simprl 790 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑧𝑗)
44 elrestr 15912 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑢𝑗𝑧𝑗) → (𝑧𝑢) ∈ (𝑗t 𝑢))
4540, 42, 43, 44syl3anc 1318 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → (𝑧𝑢) ∈ (𝑗t 𝑢))
46 simprrr 801 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)))
4746adantr 480 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)))
48 simprr 792 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥𝑧)
493ad2antrr 758 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥𝑢)
5048, 49elind 3760 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥 ∈ (𝑧𝑢))
51 eleq2 2677 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧𝑢) → (𝑥𝑣𝑥 ∈ (𝑧𝑢)))
52 sseq2 3590 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑧𝑢) → (𝑛𝑣𝑛 ⊆ (𝑧𝑢)))
5352anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑧𝑢) → ((𝑥𝑛𝑛𝑣) ↔ (𝑥𝑛𝑛 ⊆ (𝑧𝑢))))
5453rexbidv 3034 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧𝑢) → (∃𝑛𝑡 (𝑥𝑛𝑛𝑣) ↔ ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢))))
5551, 54imbi12d 333 . . . . . . . . . . . . . 14 (𝑣 = (𝑧𝑢) → ((𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)) ↔ (𝑥 ∈ (𝑧𝑢) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)))))
5655rspcv 3278 . . . . . . . . . . . . 13 ((𝑧𝑢) ∈ (𝑗t 𝑢) → (∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)) → (𝑥 ∈ (𝑧𝑢) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)))))
5745, 47, 50, 56syl3c 64 . . . . . . . . . . . 12 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)))
583ad2antrr 758 . . . . . . . . . . . . . . . . . 18 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑥𝑢)
59 elin 3758 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑛𝑢) ↔ (𝑥𝑛𝑥𝑢))
6059simplbi2com 655 . . . . . . . . . . . . . . . . . 18 (𝑥𝑢 → (𝑥𝑛𝑥 ∈ (𝑛𝑢)))
6158, 60syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑥𝑛𝑥 ∈ (𝑛𝑢)))
6222biantrud 527 . . . . . . . . . . . . . . . . . . 19 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑧 ↔ (𝑛𝑧𝑛𝑢)))
63 ssin 3797 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑧𝑛𝑢) ↔ 𝑛 ⊆ (𝑧𝑢))
6462, 63syl6bb 275 . . . . . . . . . . . . . . . . . 18 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑧𝑛 ⊆ (𝑧𝑢)))
65 ssinss1 3803 . . . . . . . . . . . . . . . . . 18 (𝑛𝑧 → (𝑛𝑢) ⊆ 𝑧)
6664, 65syl6bir 243 . . . . . . . . . . . . . . . . 17 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛 ⊆ (𝑧𝑢) → (𝑛𝑢) ⊆ 𝑧))
6761, 66anim12d 584 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → ((𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
6867reximdva 3000 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
69 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ V
7069inex1 4727 . . . . . . . . . . . . . . . . 17 (𝑛𝑢) ∈ V
7170rgenw 2908 . . . . . . . . . . . . . . . 16 𝑛𝑡 (𝑛𝑢) ∈ V
72 eleq2 2677 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑛𝑢) → (𝑥𝑤𝑥 ∈ (𝑛𝑢)))
73 sseq1 3589 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑛𝑢) → (𝑤𝑧 ↔ (𝑛𝑢) ⊆ 𝑧))
7472, 73anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑛𝑢) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
7529, 74rexrnmpt 6277 . . . . . . . . . . . . . . . 16 (∀𝑛𝑡 (𝑛𝑢) ∈ V → (∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧) ↔ ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
7671, 75ax-mp 5 . . . . . . . . . . . . . . 15 (∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧) ↔ ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧))
7768, 76syl6ibr 241 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
7877adantrr 749 . . . . . . . . . . . . 13 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
7978adantr 480 . . . . . . . . . . . 12 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
8057, 79mpd 15 . . . . . . . . . . 11 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))
8180expr 641 . . . . . . . . . 10 ((((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ 𝑧𝑗) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
8281ralrimiva 2949 . . . . . . . . 9 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
83 breq1 4586 . . . . . . . . . . 11 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (𝑦 ≼ ω ↔ ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω))
84 rexeq 3116 . . . . . . . . . . . . 13 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
8584imbi2d 329 . . . . . . . . . . . 12 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))))
8685ralbidv 2969 . . . . . . . . . . 11 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))))
8783, 86anbi12d 743 . . . . . . . . . 10 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → ((𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))))
8887rspcev 3282 . . . . . . . . 9 ((ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗 ∧ (ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8936, 39, 82, 88syl12anc 1316 . . . . . . . 8 (((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9013, 89rexlimddv 3017 . . . . . . 7 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
91903adantr1 1213 . . . . . 6 ((((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔)) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
92 simpl 472 . . . . . . 7 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → 𝑗 ∈ Locally 1st𝜔)
931adantr 480 . . . . . . . 8 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → 𝑗 ∈ Top)
947topopn 20536 . . . . . . . 8 (𝑗 ∈ Top → 𝑗𝑗)
9593, 94syl 17 . . . . . . 7 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → 𝑗𝑗)
96 simpr 476 . . . . . . 7 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → 𝑥 𝑗)
97 llyi 21087 . . . . . . 7 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑗𝑗𝑥 𝑗) → ∃𝑢𝑗 (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔))
9892, 95, 96, 97syl3anc 1318 . . . . . 6 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → ∃𝑢𝑗 (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1st𝜔))
9991, 98r19.29a 3060 . . . . 5 ((𝑗 ∈ Locally 1st𝜔 ∧ 𝑥 𝑗) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
10099ralrimiva 2949 . . . 4 (𝑗 ∈ Locally 1st𝜔 → ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1017is1stc2 21055 . . . 4 (𝑗 ∈ 1st𝜔 ↔ (𝑗 ∈ Top ∧ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
1021, 100, 101sylanbrc 695 . . 3 (𝑗 ∈ Locally 1st𝜔 → 𝑗 ∈ 1st𝜔)
103102ssriv 3572 . 2 Locally 1st𝜔 ⊆ 1st𝜔
104 1stcrest 21066 . . . . 5 ((𝑗 ∈ 1st𝜔 ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 1st𝜔)
105104adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ 1st𝜔 ∧ 𝑥𝑗)) → (𝑗t 𝑥) ∈ 1st𝜔)
106 1stctop 21056 . . . . . 6 (𝑗 ∈ 1st𝜔 → 𝑗 ∈ Top)
107106ssriv 3572 . . . . 5 1st𝜔 ⊆ Top
108107a1i 11 . . . 4 (⊤ → 1st𝜔 ⊆ Top)
109105, 108restlly 21096 . . 3 (⊤ → 1st𝜔 ⊆ Locally 1st𝜔)
110109trud 1484 . 2 1st𝜔 ⊆ Locally 1st𝜔
111103, 110eqssi 3584 1 Locally 1st𝜔 = 1st𝜔
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wtru 1476  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  (class class class)co 6549  ωcom 6957  cdom 7839  t crest 15904  Topctop 20517  1st𝜔c1stc 21050  Locally clly 21077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-card 8648  df-acn 8651  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-1stc 21052  df-lly 21079
This theorem is referenced by:  dis1stc  21112
  Copyright terms: Public domain W3C validator