MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Visualization version   GIF version

Theorem restopn2 20791
Description: The if 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4403 . . . . 5 (𝐵 ∈ (𝐽t 𝐴) → 𝐵 (𝐽t 𝐴))
2 elssuni 4403 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
3 eqid 2610 . . . . . . . 8 𝐽 = 𝐽
43restuni 20776 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
52, 4sylan2 490 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 = (𝐽t 𝐴))
65sseq2d 3596 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵𝐴𝐵 (𝐽t 𝐴)))
71, 6syl5ibr 235 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) → 𝐵𝐴))
87pm4.71rd 665 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
9 simpll 786 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simplr 788 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐽)
11 ssid 3587 . . . . . 6 𝐴𝐴
1211a1i 11 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐴)
13 simpr 476 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐵𝐴)
14 restopnb 20789 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ (𝐴𝐽𝐴𝐴𝐵𝐴)) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
159, 10, 10, 12, 13, 14syl23anc 1325 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
1615pm5.32da 671 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
178, 16bitr4d 270 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵𝐽)))
18 ancom 465 . 2 ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐽𝐵𝐴))
1917, 18syl6bb 275 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540   cuni 4372  (class class class)co 6549  t crest 15904  Topctop 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523
This theorem is referenced by:  restdis  20792  perfopn  20799  llyrest  21098  nllyrest  21099  llyidm  21101  nllyidm  21102  lly1stc  21109  qtoprest  21330  xrtgioo  22417  lhop  23583  efopnlem2  24203  cvmopnlem  30514  cvmlift2lem9a  30539  cvmlift2lem9  30547  cvmlift3lem6  30560
  Copyright terms: Public domain W3C validator