Step | Hyp | Ref
| Expression |
1 | | islly 21081 |
. . . 4
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
2 | 1 | simprbi 479 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
3 | | pweq 4111 |
. . . . . . 7
⊢ (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈) |
4 | 3 | ineq2d 3776 |
. . . . . 6
⊢ (𝑥 = 𝑈 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑈)) |
5 | 4 | rexeqdv 3122 |
. . . . 5
⊢ (𝑥 = 𝑈 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
6 | 5 | raleqbi1dv 3123 |
. . . 4
⊢ (𝑥 = 𝑈 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
7 | 6 | rspccva 3281 |
. . 3
⊢
((∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
8 | 2, 7 | sylan 487 |
. 2
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽) → ∀𝑦 ∈ 𝑈 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
9 | | eleq1 2676 |
. . . . . . 7
⊢ (𝑦 = 𝑃 → (𝑦 ∈ 𝑢 ↔ 𝑃 ∈ 𝑢)) |
10 | 9 | anbi1d 737 |
. . . . . 6
⊢ (𝑦 = 𝑃 → ((𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
11 | 10 | anbi2d 736 |
. . . . 5
⊢ (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |
12 | | anass 679 |
. . . . . 6
⊢ (((𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝑈) ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑈 ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |
13 | | elin 3758 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢 ∈ 𝐽 ∧ 𝑢 ∈ 𝒫 𝑈)) |
14 | | selpw 4115 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝒫 𝑈 ↔ 𝑢 ⊆ 𝑈) |
15 | 14 | anbi2i 726 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐽 ∧ 𝑢 ∈ 𝒫 𝑈) ↔ (𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝑈)) |
16 | 13, 15 | bitri 263 |
. . . . . . 7
⊢ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝑈)) |
17 | 16 | anbi1i 727 |
. . . . . 6
⊢ ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ ((𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝑈) ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
18 | | 3anass 1035 |
. . . . . . 7
⊢ ((𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ (𝑢 ⊆ 𝑈 ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
19 | 18 | anbi2i 726 |
. . . . . 6
⊢ ((𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑈 ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |
20 | 12, 17, 19 | 3bitr4i 291 |
. . . . 5
⊢ ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
21 | 11, 20 | syl6bb 275 |
. . . 4
⊢ (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |
22 | 21 | rexbidv2 3030 |
. . 3
⊢ (𝑦 = 𝑃 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
23 | 22 | rspccva 3281 |
. 2
⊢
((∀𝑦 ∈
𝑈 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
24 | 8, 23 | stoic3 1692 |
1
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |