MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyi Structured version   Visualization version   GIF version

Theorem llyi 21087
Description: The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyi ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem llyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 21081 . . . 4 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
21simprbi 479 . . 3 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 pweq 4111 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 3776 . . . . . 6 (𝑥 = 𝑈 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑈))
54rexeqdv 3122 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
65raleqbi1dv 3123 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
76rspccva 3281 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
82, 7sylan 487 . 2 ((𝐽 ∈ Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
9 eleq1 2676 . . . . . . 7 (𝑦 = 𝑃 → (𝑦𝑢𝑃𝑢))
109anbi1d 737 . . . . . 6 (𝑦 = 𝑃 → ((𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1110anbi2d 736 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
12 anass 679 . . . . . 6 (((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
13 elin 3758 . . . . . . . 8 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢 ∈ 𝒫 𝑈))
14 selpw 4115 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1514anbi2i 726 . . . . . . . 8 ((𝑢𝐽𝑢 ∈ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1613, 15bitri 263 . . . . . . 7 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1716anbi1i 727 . . . . . 6 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ ((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 3anass 1035 . . . . . . 7 ((𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1918anbi2i 726 . . . . . 6 ((𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2012, 17, 193bitr4i 291 . . . . 5 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2111, 20syl6bb 275 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2221rexbidv2 3030 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2322rspccva 3281 . 2 ((∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
248, 23stoic3 1692 1 ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540  𝒫 cpw 4108  (class class class)co 6549  t crest 15904  Topctop 20517  Locally clly 21077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-lly 21079
This theorem is referenced by:  llynlly  21090  islly2  21097  llyrest  21098  llyidm  21101  nllyidm  21102  lly1stc  21109  dislly  21110  txlly  21249  cvmlift2lem10  30548
  Copyright terms: Public domain W3C validator