MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyi Structured version   Unicode version

Theorem llyi 20475
Description: The property of a locally  A topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyi  |-  ( ( J  e. Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  J  ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) )
Distinct variable groups:    u, A    u, P    u, U    u, J

Proof of Theorem llyi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 20469 . . . 4  |-  ( J  e. Locally  A  <->  ( J  e. 
Top  /\  A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
21simprbi 465 . . 3  |-  ( J  e. Locally  A  ->  A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
) )
3 pweq 3982 . . . . . . 7  |-  ( x  =  U  ->  ~P x  =  ~P U
)
43ineq2d 3664 . . . . . 6  |-  ( x  =  U  ->  ( J  i^i  ~P x )  =  ( J  i^i  ~P U ) )
54rexeqdv 3032 . . . . 5  |-  ( x  =  U  ->  ( E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
)  <->  E. u  e.  ( J  i^i  ~P U
) ( y  e.  u  /\  ( Jt  u )  e.  A ) ) )
65raleqbi1dv 3033 . . . 4  |-  ( x  =  U  ->  ( A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
)  <->  A. y  e.  U  E. u  e.  ( J  i^i  ~P U ) ( y  e.  u  /\  ( Jt  u )  e.  A
) ) )
76rspccva 3181 . . 3  |-  ( ( A. x  e.  J  A. y  e.  x  E. u  e.  ( J  i^i  ~P x ) ( y  e.  u  /\  ( Jt  u )  e.  A
)  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  ( J  i^i  ~P U ) ( y  e.  u  /\  ( Jt  u )  e.  A
) )
82, 7sylan 473 . 2  |-  ( ( J  e. Locally  A  /\  U  e.  J )  ->  A. y  e.  U  E. u  e.  ( J  i^i  ~P U ) ( y  e.  u  /\  ( Jt  u )  e.  A
) )
9 eleq1 2494 . . . . . . 7  |-  ( y  =  P  ->  (
y  e.  u  <->  P  e.  u ) )
109anbi1d 709 . . . . . 6  |-  ( y  =  P  ->  (
( y  e.  u  /\  ( Jt  u )  e.  A
)  <->  ( P  e.  u  /\  ( Jt  u )  e.  A ) ) )
1110anbi2d 708 . . . . 5  |-  ( y  =  P  ->  (
( u  e.  ( J  i^i  ~P U
)  /\  ( y  e.  u  /\  ( Jt  u )  e.  A
) )  <->  ( u  e.  ( J  i^i  ~P U )  /\  ( P  e.  u  /\  ( Jt  u )  e.  A
) ) ) )
12 anass 653 . . . . . 6  |-  ( ( ( u  e.  J  /\  u  C_  U )  /\  ( P  e.  u  /\  ( Jt  u )  e.  A ) )  <->  ( u  e.  J  /\  ( u 
C_  U  /\  ( P  e.  u  /\  ( Jt  u )  e.  A
) ) ) )
13 elin 3649 . . . . . . . 8  |-  ( u  e.  ( J  i^i  ~P U )  <->  ( u  e.  J  /\  u  e.  ~P U ) )
14 selpw 3986 . . . . . . . . 9  |-  ( u  e.  ~P U  <->  u  C_  U
)
1514anbi2i 698 . . . . . . . 8  |-  ( ( u  e.  J  /\  u  e.  ~P U
)  <->  ( u  e.  J  /\  u  C_  U ) )
1613, 15bitri 252 . . . . . . 7  |-  ( u  e.  ( J  i^i  ~P U )  <->  ( u  e.  J  /\  u  C_  U ) )
1716anbi1i 699 . . . . . 6  |-  ( ( u  e.  ( J  i^i  ~P U )  /\  ( P  e.  u  /\  ( Jt  u )  e.  A ) )  <->  ( ( u  e.  J  /\  u  C_  U )  /\  ( P  e.  u  /\  ( Jt  u )  e.  A
) ) )
18 3anass 986 . . . . . . 7  |-  ( ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
)  <->  ( u  C_  U  /\  ( P  e.  u  /\  ( Jt  u )  e.  A ) ) )
1918anbi2i 698 . . . . . 6  |-  ( ( u  e.  J  /\  ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) )  <->  ( u  e.  J  /\  (
u  C_  U  /\  ( P  e.  u  /\  ( Jt  u )  e.  A
) ) ) )
2012, 17, 193bitr4i 280 . . . . 5  |-  ( ( u  e.  ( J  i^i  ~P U )  /\  ( P  e.  u  /\  ( Jt  u )  e.  A ) )  <->  ( u  e.  J  /\  ( u 
C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) ) )
2111, 20syl6bb 264 . . . 4  |-  ( y  =  P  ->  (
( u  e.  ( J  i^i  ~P U
)  /\  ( y  e.  u  /\  ( Jt  u )  e.  A
) )  <->  ( u  e.  J  /\  (
u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) ) ) )
2221rexbidv2 2935 . . 3  |-  ( y  =  P  ->  ( E. u  e.  ( J  i^i  ~P U ) ( y  e.  u  /\  ( Jt  u )  e.  A
)  <->  E. u  e.  J  ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) ) )
2322rspccva 3181 . 2  |-  ( ( A. y  e.  U  E. u  e.  ( J  i^i  ~P U ) ( y  e.  u  /\  ( Jt  u )  e.  A
)  /\  P  e.  U )  ->  E. u  e.  J  ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A ) )
248, 23stoic3 1656 1  |-  ( ( J  e. Locally  A  /\  U  e.  J  /\  P  e.  U )  ->  E. u  e.  J  ( u  C_  U  /\  P  e.  u  /\  ( Jt  u )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776    i^i cin 3435    C_ wss 3436   ~Pcpw 3979  (class class class)co 6301   ↾t crest 15306   Topctop 19903  Locally clly 20465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-iota 5561  df-fv 5605  df-ov 6304  df-lly 20467
This theorem is referenced by:  llynlly  20478  islly2  20485  llyrest  20486  llyidm  20489  nllyidm  20490  lly1stc  20497  dislly  20498  txlly  20637  cvmlift2lem10  30030
  Copyright terms: Public domain W3C validator