MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrest Structured version   Visualization version   GIF version

Theorem 1stcrest 21066
Description: A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stcrest ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1st𝜔)

Proof of Theorem 1stcrest
Dummy variables 𝑡 𝑎 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21056 . . 3 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ Top)
2 resttop 20774 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 487 . 2 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
4 eqid 2610 . . . . . . . 8 𝐽 = 𝐽
54restuni2 20781 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
61, 5sylan 487 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
76eleq2d 2673 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝑥 ∈ (𝐴 𝐽) ↔ 𝑥 (𝐽t 𝐴)))
87biimpar 501 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → 𝑥 ∈ (𝐴 𝐽))
9 simpl 472 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → 𝐽 ∈ 1st𝜔)
10 inss2 3796 . . . . . . 7 (𝐴 𝐽) ⊆ 𝐽
1110sseli 3564 . . . . . 6 (𝑥 ∈ (𝐴 𝐽) → 𝑥 𝐽)
1241stcclb 21057 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 𝐽) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
139, 11, 12syl2an 493 . . . . 5 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑡 ∈ 𝒫 𝐽(𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))
14 simplll 794 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ 1st𝜔)
15 elpwi 4117 . . . . . . . . 9 (𝑡 ∈ 𝒫 𝐽𝑡𝐽)
1615ad2antrl 760 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡𝐽)
17 ssrest 20790 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑡𝐽) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
1814, 16, 17syl2anc 691 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
19 ovex 6577 . . . . . . . 8 (𝐽t 𝐴) ∈ V
2019elpw2 4755 . . . . . . 7 ((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ↔ (𝑡t 𝐴) ⊆ (𝐽t 𝐴))
2118, 20sylibr 223 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴))
22 vex 3176 . . . . . . . 8 𝑡 ∈ V
23 simpllr 795 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐴𝑉)
24 restval 15910 . . . . . . . 8 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
2522, 23, 24sylancr 694 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) = ran (𝑣𝑡 ↦ (𝑣𝐴)))
26 simprrl 800 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝑡 ≼ ω)
27 1stcrestlem 21065 . . . . . . . 8 (𝑡 ≼ ω → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2826, 27syl 17 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ran (𝑣𝑡 ↦ (𝑣𝐴)) ≼ ω)
2925, 28eqbrtrd 4605 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑡t 𝐴) ≼ ω)
301ad3antrrr 762 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → 𝐽 ∈ Top)
31 elrest 15911 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
3230, 23, 31syl2anc 691 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑎𝐽 𝑧 = (𝑎𝐴)))
33 r19.29 3054 . . . . . . . . . . . 12 ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → ∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)))
34 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝑥𝐴)
3534a1d 25 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥𝐴))
3635ancld 574 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦 → (𝑥𝑦𝑥𝐴)))
37 elin 3758 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑦𝐴) ↔ (𝑥𝑦𝑥𝐴))
3836, 37syl6ibr 241 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑥𝑦𝑥 ∈ (𝑦𝐴)))
39 ssrin 3800 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝑎 → (𝑦𝐴) ⊆ (𝑎𝐴))
4039a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑦𝑎 → (𝑦𝐴) ⊆ (𝑎𝐴)))
4138, 40anim12d 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → ((𝑥𝑦𝑦𝑎) → (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
4241reximdv 2999 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
43 vex 3176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
4443inex1 4727 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴) ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑦𝑡) → (𝑦𝐴) ∈ V)
46 simp-4r 803 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → 𝐴𝑉)
47 elrest 15911 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ V ∧ 𝐴𝑉) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
4822, 46, 47sylancr 694 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (𝑤 ∈ (𝑡t 𝐴) ↔ ∃𝑦𝑡 𝑤 = (𝑦𝐴)))
49 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑥𝑤𝑥 ∈ (𝑦𝐴)))
50 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑦𝐴) → (𝑤 ⊆ (𝑎𝐴) ↔ (𝑦𝐴) ⊆ (𝑎𝐴)))
5149, 50anbi12d 743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = (𝑦𝐴) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5251adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) ∧ 𝑤 = (𝑦𝐴)) → ((𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5345, 48, 52rexxfr2d 4809 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)) ↔ ∃𝑦𝑡 (𝑥 ∈ (𝑦𝐴) ∧ (𝑦𝐴) ⊆ (𝑎𝐴))))
5442, 53sylibrd 248 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ (𝑎𝐽𝑥𝐴)) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
5554expr 641 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (𝑥𝐴 → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5655com23 84 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (∃𝑦𝑡 (𝑥𝑦𝑦𝑎) → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
5756imim2d 55 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (𝑥𝑎 → (𝑥𝐴 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))))
5857imp4b 611 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
59 eleq2 2677 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → (𝑥𝑧𝑥 ∈ (𝑎𝐴)))
60 elin 3758 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑎𝐴) ↔ (𝑥𝑎𝑥𝐴))
6159, 60syl6bb 275 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (𝑥𝑧 ↔ (𝑥𝑎𝑥𝐴)))
62 sseq2 3590 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎𝐴) → (𝑤𝑧𝑤 ⊆ (𝑎𝐴)))
6362anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎𝐴) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6463rexbidv 3034 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑎𝐴) → (∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴))))
6561, 64imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐴) → ((𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)) ↔ ((𝑥𝑎𝑥𝐴) → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤 ⊆ (𝑎𝐴)))))
6658, 65syl5ibrcom 236 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) ∧ (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))) → (𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6766expimpd 627 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) ∧ 𝑎𝐽) → (((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6867rexlimdva 3013 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∃𝑎𝐽 ((𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
6933, 68syl5 33 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → ((∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) ∧ ∃𝑎𝐽 𝑧 = (𝑎𝐴)) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7069expd 451 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ 𝑡 ∈ 𝒫 𝐽) → (∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
7170impr 647 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎)))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7271adantrrl 756 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (∃𝑎𝐽 𝑧 = (𝑎𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7332, 72sylbid 229 . . . . . . 7 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → (𝑧 ∈ (𝐽t 𝐴) → (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7473ralrimiv 2948 . . . . . 6 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
75 breq1 4586 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (𝑦 ≼ ω ↔ (𝑡t 𝐴) ≼ ω))
76 rexeq 3116 . . . . . . . . . 10 (𝑦 = (𝑡t 𝐴) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))
7776imbi2d 329 . . . . . . . . 9 (𝑦 = (𝑡t 𝐴) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7877ralbidv 2969 . . . . . . . 8 (𝑦 = (𝑡t 𝐴) → (∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧))))
7975, 78anbi12d 743 . . . . . . 7 (𝑦 = (𝑡t 𝐴) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))))
8079rspcev 3282 . . . . . 6 (((𝑡t 𝐴) ∈ 𝒫 (𝐽t 𝐴) ∧ ((𝑡t 𝐴) ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤 ∈ (𝑡t 𝐴)(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8121, 29, 74, 80syl12anc 1316 . . . . 5 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) ∧ (𝑡 ∈ 𝒫 𝐽 ∧ (𝑡 ≼ ω ∧ ∀𝑎𝐽 (𝑥𝑎 → ∃𝑦𝑡 (𝑥𝑦𝑦𝑎))))) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8213, 81rexlimddv 3017 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐴 𝐽)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
838, 82syldan 486 . . 3 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) ∧ 𝑥 (𝐽t 𝐴)) → ∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8483ralrimiva 2949 . 2 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
85 eqid 2610 . . 3 (𝐽t 𝐴) = (𝐽t 𝐴)
8685is1stc2 21055 . 2 ((𝐽t 𝐴) ∈ 1st𝜔 ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 (𝐽t 𝐴)∃𝑦 ∈ 𝒫 (𝐽t 𝐴)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝐽t 𝐴)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
873, 84, 86sylanbrc 695 1 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  (class class class)co 6549  ωcom 6957  cdom 7839  t crest 15904  Topctop 20517  1st𝜔c1stc 21050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-card 8648  df-acn 8651  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-1stc 21052
This theorem is referenced by:  lly1stc  21109
  Copyright terms: Public domain W3C validator