MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lly1stc Structured version   Unicode version

Theorem lly1stc 20166
Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
lly1stc  |- Locally  1stc  =  1stc

Proof of Theorem lly1stc
Dummy variables  j 
a  n  t  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20142 . . . 4  |-  ( j  e. Locally  1stc  ->  j  e.  Top )
2 simprr 755 . . . . . . . . 9  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  (
jt  u )  e.  1stc )
3 simprl 754 . . . . . . . . . 10  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  x  e.  u )
41ad3antrrr 727 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  j  e.  Top )
5 elssuni 4264 . . . . . . . . . . . 12  |-  ( u  e.  j  ->  u  C_ 
U. j )
65ad2antlr 724 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  u  C_ 
U. j )
7 eqid 2454 . . . . . . . . . . . 12  |-  U. j  =  U. j
87restuni 19833 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  C_  U. j )  ->  u  =  U. ( jt  u ) )
94, 6, 8syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  u  =  U. ( jt  u ) )
103, 9eleqtrd 2544 . . . . . . . . 9  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  x  e.  U. ( jt  u ) )
11 eqid 2454 . . . . . . . . . 10  |-  U. (
jt  u )  =  U. ( jt  u )
12111stcclb 20114 . . . . . . . . 9  |-  ( ( ( jt  u )  e.  1stc  /\  x  e.  U. (
jt  u ) )  ->  E. t  e.  ~P  ( jt  u ) ( t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) )
132, 10, 12syl2anc 659 . . . . . . . 8  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  E. t  e.  ~P  ( jt  u ) ( t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) )
14 elpwi 4008 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ~P ( jt  u )  ->  t  C_  ( jt  u ) )
1514adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  t  C_  ( jt  u ) )
1615sselda 3489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  n  e.  ( jt  u ) )
174adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  j  e.  Top )
18 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  u  e.  j )
19 restopn2 19848 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( n  e.  ( jt  u )  <->  ( n  e.  j  /\  n  C_  u ) ) )
2017, 18, 19syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  ( n  e.  ( jt  u )  <->  ( n  e.  j  /\  n  C_  u ) ) )
2120simplbda 622 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  ( jt  u ) )  ->  n  C_  u )
2216, 21syldan 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  n  C_  u )
23 df-ss 3475 . . . . . . . . . . . . . . 15  |-  ( n 
C_  u  <->  ( n  i^i  u )  =  n )
2422, 23sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
n  i^i  u )  =  n )
2520simprbda 621 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  ( jt  u ) )  ->  n  e.  j )
2616, 25syldan 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  n  e.  j )
2724, 26eqeltrd 2542 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
n  i^i  u )  e.  j )
28 ineq1 3679 . . . . . . . . . . . . . 14  |-  ( a  =  n  ->  (
a  i^i  u )  =  ( n  i^i  u ) )
2928cbvmptv 4530 . . . . . . . . . . . . 13  |-  ( a  e.  t  |->  ( a  i^i  u ) )  =  ( n  e.  t  |->  ( n  i^i  u ) )
3027, 29fmptd 6031 . . . . . . . . . . . 12  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  ( a  e.  t  |->  ( a  i^i  u ) ) : t --> j )
31 frn 5719 . . . . . . . . . . . 12  |-  ( ( a  e.  t  |->  ( a  i^i  u ) ) : t --> j  ->  ran  ( a  e.  t  |->  ( a  i^i  u ) ) 
C_  j )
3230, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  ran  ( a  e.  t  |->  ( a  i^i  u ) ) 
C_  j )
3332adantrr 714 . . . . . . . . . 10  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  ran  ( a  e.  t 
|->  ( a  i^i  u
) )  C_  j
)
34 vex 3109 . . . . . . . . . . 11  |-  j  e. 
_V
3534elpw2 4601 . . . . . . . . . 10  |-  ( ran  ( a  e.  t 
|->  ( a  i^i  u
) )  e.  ~P j 
<->  ran  ( a  e.  t  |->  ( a  i^i  u ) )  C_  j )
3633, 35sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  ran  ( a  e.  t 
|->  ( a  i^i  u
) )  e.  ~P j )
37 simprrl 763 . . . . . . . . . 10  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  t  ~<_  om )
38 1stcrestlem 20122 . . . . . . . . . 10  |-  ( t  ~<_  om  ->  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ~<_  om )
3937, 38syl 16 . . . . . . . . 9  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  ran  ( a  e.  t 
|->  ( a  i^i  u
) )  ~<_  om )
404ad2antrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  j  e.  Top )
41 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  u  e.  j )
4241adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  u  e.  j )
43 simprl 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  z  e.  j )
44 elrestr 14921 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  u  e.  j  /\  z  e.  j )  ->  ( z  i^i  u
)  e.  ( jt  u ) )
4540, 42, 43, 44syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  ( z  i^i  u )  e.  ( jt  u ) )
46 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) )
4746adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) )
48 simprr 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  x  e.  z )
493ad2antrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  x  e.  u )
5048, 49elind 3674 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  x  e.  ( z  i^i  u
) )
51 eleq2 2527 . . . . . . . . . . . . . . 15  |-  ( v  =  ( z  i^i  u )  ->  (
x  e.  v  <->  x  e.  ( z  i^i  u
) ) )
52 sseq2 3511 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( z  i^i  u )  ->  (
n  C_  v  <->  n  C_  (
z  i^i  u )
) )
5352anbi2d 701 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( z  i^i  u )  ->  (
( x  e.  n  /\  n  C_  v )  <-> 
( x  e.  n  /\  n  C_  ( z  i^i  u ) ) ) )
5453rexbidv 2965 . . . . . . . . . . . . . . 15  |-  ( v  =  ( z  i^i  u )  ->  ( E. n  e.  t 
( x  e.  n  /\  n  C_  v )  <->  E. n  e.  t 
( x  e.  n  /\  n  C_  ( z  i^i  u ) ) ) )
5551, 54imbi12d 318 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  i^i  u )  ->  (
( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) )  <->  ( x  e.  ( z  i^i  u
)  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  ( z  i^i  u
) ) ) ) )
5655rspcv 3203 . . . . . . . . . . . . 13  |-  ( ( z  i^i  u )  e.  ( jt  u )  ->  ( A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) )  -> 
( x  e.  ( z  i^i  u )  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  ( z  i^i  u ) ) ) ) )
5745, 47, 50, 56syl3c 61 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  ( z  i^i  u
) ) )
583ad2antrr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  x  e.  u )
59 elin 3673 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( n  i^i  u )  <->  ( x  e.  n  /\  x  e.  u ) )
6059simplbi2com 625 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  u  ->  (
x  e.  n  ->  x  e.  ( n  i^i  u ) ) )
6158, 60syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
x  e.  n  ->  x  e.  ( n  i^i  u ) ) )
6222biantrud 505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
n  C_  z  <->  ( n  C_  z  /\  n  C_  u ) ) )
63 ssin 3706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  C_  z  /\  n  C_  u )  <->  n  C_  (
z  i^i  u )
)
6462, 63syl6bb 261 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
n  C_  z  <->  n  C_  (
z  i^i  u )
) )
65 ssinss1 3712 . . . . . . . . . . . . . . . . . 18  |-  ( n 
C_  z  ->  (
n  i^i  u )  C_  z )
6664, 65syl6bir 229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
n  C_  ( z  i^i  u )  ->  (
n  i^i  u )  C_  z ) )
6761, 66anim12d 561 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  /\  n  e.  t )  ->  (
( x  e.  n  /\  n  C_  ( z  i^i  u ) )  ->  ( x  e.  ( n  i^i  u
)  /\  ( n  i^i  u )  C_  z
) ) )
6867reximdva 2929 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  ( E. n  e.  t  (
x  e.  n  /\  n  C_  ( z  i^i  u ) )  ->  E. n  e.  t 
( x  e.  ( n  i^i  u )  /\  ( n  i^i  u )  C_  z
) ) )
69 vex 3109 . . . . . . . . . . . . . . . . . 18  |-  n  e. 
_V
7069inex1 4578 . . . . . . . . . . . . . . . . 17  |-  ( n  i^i  u )  e. 
_V
7170rgenw 2815 . . . . . . . . . . . . . . . 16  |-  A. n  e.  t  ( n  i^i  u )  e.  _V
72 eleq2 2527 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( n  i^i  u )  ->  (
x  e.  w  <->  x  e.  ( n  i^i  u
) ) )
73 sseq1 3510 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( n  i^i  u )  ->  (
w  C_  z  <->  ( n  i^i  u )  C_  z
) )
7472, 73anbi12d 708 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( n  i^i  u )  ->  (
( x  e.  w  /\  w  C_  z )  <-> 
( x  e.  ( n  i^i  u )  /\  ( n  i^i  u )  C_  z
) ) )
7529, 74rexrnmpt 6017 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  t  (
n  i^i  u )  e.  _V  ->  ( E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z )  <->  E. n  e.  t 
( x  e.  ( n  i^i  u )  /\  ( n  i^i  u )  C_  z
) ) )
7671, 75ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( E. w  e.  ran  (
a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z )  <->  E. n  e.  t  ( x  e.  ( n  i^i  u
)  /\  ( n  i^i  u )  C_  z
) )
7768, 76syl6ibr 227 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  t  e.  ~P ( jt  u ) )  ->  ( E. n  e.  t  (
x  e.  n  /\  n  C_  ( z  i^i  u ) )  ->  E. w  e.  ran  ( a  e.  t 
|->  ( a  i^i  u
) ) ( x  e.  w  /\  w  C_  z ) ) )
7877adantrr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  ( E. n  e.  t 
( x  e.  n  /\  n  C_  ( z  i^i  u ) )  ->  E. w  e.  ran  ( a  e.  t 
|->  ( a  i^i  u
) ) ( x  e.  w  /\  w  C_  z ) ) )
7978adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  ( E. n  e.  t  (
x  e.  n  /\  n  C_  ( z  i^i  u ) )  ->  E. w  e.  ran  ( a  e.  t 
|->  ( a  i^i  u
) ) ( x  e.  w  /\  w  C_  z ) ) )
8057, 79mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  (
z  e.  j  /\  x  e.  z )
)  ->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) )
8180expr 613 . . . . . . . . . 10  |-  ( ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  ( x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  /\  z  e.  j )  ->  (
x  e.  z  ->  E. w  e.  ran  ( a  e.  t 
|->  ( a  i^i  u
) ) ( x  e.  w  /\  w  C_  z ) ) )
8281ralrimiva 2868 . . . . . . . . 9  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  A. z  e.  j  ( x  e.  z  ->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) ) )
83 breq1 4442 . . . . . . . . . . 11  |-  ( y  =  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ->  ( y  ~<_  om  <->  ran  ( a  e.  t 
|->  ( a  i^i  u
) )  ~<_  om )
)
84 rexeq 3052 . . . . . . . . . . . . 13  |-  ( y  =  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ->  ( E. w  e.  y  ( x  e.  w  /\  w  C_  z )  <->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) ) )
8584imbi2d 314 . . . . . . . . . . . 12  |-  ( y  =  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ->  ( ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) )  <->  ( x  e.  z  ->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) ) ) )
8685ralbidv 2893 . . . . . . . . . . 11  |-  ( y  =  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ->  ( A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) )  <->  A. z  e.  j  ( x  e.  z  ->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) ) ) )
8783, 86anbi12d 708 . . . . . . . . . 10  |-  ( y  =  ran  ( a  e.  t  |->  ( a  i^i  u ) )  ->  ( ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) )  <-> 
( ran  ( a  e.  t  |->  ( a  i^i  u ) )  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  ran  ( a  e.  t  |->  ( a  i^i  u ) ) ( x  e.  w  /\  w  C_  z ) ) ) ) )
8887rspcev 3207 . . . . . . . . 9  |-  ( ( ran  ( a  e.  t  |->  ( a  i^i  u ) )  e. 
~P j  /\  ( ran  ( a  e.  t 
|->  ( a  i^i  u
) )  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  ran  ( a  e.  t 
|->  ( a  i^i  u
) ) ( x  e.  w  /\  w  C_  z ) ) ) )  ->  E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
8936, 39, 82, 88syl12anc 1224 . . . . . . . 8  |-  ( ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  /\  (
t  e.  ~P (
jt  u )  /\  (
t  ~<_  om  /\  A. v  e.  ( jt  u ) ( x  e.  v  ->  E. n  e.  t  ( x  e.  n  /\  n  C_  v ) ) ) ) )  ->  E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
9013, 89rexlimddv 2950 . . . . . . 7  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
91903adantr1 1153 . . . . . 6  |-  ( ( ( ( j  e. Locally  1stc  /\  x  e.  U. j )  /\  u  e.  j )  /\  (
u  C_  U. j  /\  x  e.  u  /\  ( jt  u )  e.  1stc ) )  ->  E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
92 simpl 455 . . . . . . 7  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  -> 
j  e. Locally  1stc )
931adantr 463 . . . . . . . 8  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  -> 
j  e.  Top )
947topopn 19585 . . . . . . . 8  |-  ( j  e.  Top  ->  U. j  e.  j )
9593, 94syl 16 . . . . . . 7  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  ->  U. j  e.  j
)
96 simpr 459 . . . . . . 7  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  ->  x  e.  U. j
)
97 llyi 20144 . . . . . . 7  |-  ( ( j  e. Locally  1stc  /\  U. j  e.  j  /\  x  e.  U. j
)  ->  E. u  e.  j  ( u  C_ 
U. j  /\  x  e.  u  /\  (
jt  u )  e.  1stc ) )
9892, 95, 96, 97syl3anc 1226 . . . . . 6  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  ->  E. u  e.  j 
( u  C_  U. j  /\  x  e.  u  /\  ( jt  u )  e.  1stc ) )
9991, 98r19.29a 2996 . . . . 5  |-  ( ( j  e. Locally  1stc  /\  x  e.  U. j )  ->  E. y  e.  ~P  j ( y  ~<_  om 
/\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
10099ralrimiva 2868 . . . 4  |-  ( j  e. Locally  1stc  ->  A. x  e.  U. j E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) )
1017is1stc2 20112 . . . 4  |-  ( j  e.  1stc  <->  ( j  e. 
Top  /\  A. x  e.  U. j E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  E. w  e.  y  ( x  e.  w  /\  w  C_  z ) ) ) ) )
1021, 100, 101sylanbrc 662 . . 3  |-  ( j  e. Locally  1stc  ->  j  e.  1stc )
103102ssriv 3493 . 2  |- Locally  1stc  C_  1stc
104 1stcrest 20123 . . . . 5  |-  ( ( j  e.  1stc  /\  x  e.  j )  ->  (
jt  x )  e.  1stc )
105104adantl 464 . . . 4  |-  ( ( T.  /\  ( j  e.  1stc  /\  x  e.  j ) )  -> 
( jt  x )  e.  1stc )
106 1stctop 20113 . . . . . 6  |-  ( j  e.  1stc  ->  j  e. 
Top )
107106ssriv 3493 . . . . 5  |-  1stc  C_  Top
108107a1i 11 . . . 4  |-  ( T. 
->  1stc  C_  Top )
109105, 108restlly 20153 . . 3  |-  ( T. 
->  1stc  C_ Locally  1stc )
110109trud 1407 . 2  |-  1stc  C_ Locally  1stc
111103, 110eqssi 3505 1  |- Locally  1stc  =  1stc
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398   T. wtru 1399    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    i^i cin 3460    C_ wss 3461   ~Pcpw 3999   U.cuni 4235   class class class wbr 4439    |-> cmpt 4497   ran crn 4989   -->wf 5566  (class class class)co 6270   omcom 6673    ~<_ cdom 7507   ↾t crest 14913   Topctop 19564   1stcc1stc 20107  Locally clly 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-fin 7513  df-fi 7863  df-card 8311  df-acn 8314  df-rest 14915  df-topgen 14936  df-top 19569  df-bases 19571  df-topon 19572  df-1stc 20109  df-lly 20136
This theorem is referenced by:  dis1stc  20169
  Copyright terms: Public domain W3C validator