MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legso Structured version   Visualization version   GIF version

Theorem legso 25294
Description: The shorter-than relationship builds an order over pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
Assertion
Ref Expression
legso (𝜑< Or 𝐸)

Proof of Theorem legso
Dummy variables 𝑎 𝑥 𝑦 𝑡 𝑢 𝑣 𝑧 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neirr 2791 . . . . . . 7 ¬ (𝑥 𝑦) ≠ (𝑥 𝑦)
21intnan 951 . . . . . 6 ¬ ((𝑥 𝑦) (𝑥 𝑦) ∧ (𝑥 𝑦) ≠ (𝑥 𝑦))
3 legval.p . . . . . . 7 𝑃 = (Base‘𝐺)
4 legval.d . . . . . . 7 = (dist‘𝐺)
5 legval.i . . . . . . 7 𝐼 = (Itv‘𝐺)
6 legval.l . . . . . . 7 = (≤G‘𝐺)
7 legval.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
87adantr 480 . . . . . . . 8 ((𝜑𝑎𝐸) → 𝐺 ∈ TarskiG)
98ad3antrrr 762 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝐺 ∈ TarskiG)
10 legso.a . . . . . . 7 𝐸 = ( “ (𝑃 × 𝑃))
11 legso.f . . . . . . . . 9 (𝜑 → Fun )
1211adantr 480 . . . . . . . 8 ((𝜑𝑎𝐸) → Fun )
1312ad3antrrr 762 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → Fun )
14 legso.l . . . . . . 7 < = (( 𝐸) ∖ I )
15 legso.d . . . . . . . 8 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
1615ad4antr 764 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑃 × 𝑃) ⊆ dom )
17 simpllr 795 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑥𝑃)
18 simplr 788 . . . . . . 7 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑦𝑃)
193, 4, 5, 6, 9, 10, 13, 14, 16, 17, 18ltgov 25292 . . . . . 6 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ((𝑥 𝑦) < (𝑥 𝑦) ↔ ((𝑥 𝑦) (𝑥 𝑦) ∧ (𝑥 𝑦) ≠ (𝑥 𝑦))))
202, 19mtbiri 316 . . . . 5 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ¬ (𝑥 𝑦) < (𝑥 𝑦))
21 simpr 476 . . . . . 6 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑎 = (𝑥 𝑦))
2221, 21breq12d 4596 . . . . 5 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎 < 𝑎 ↔ (𝑥 𝑦) < (𝑥 𝑦)))
2320, 22mtbird 314 . . . 4 (((((𝜑𝑎𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ¬ 𝑎 < 𝑎)
24 simpr 476 . . . . 5 ((𝜑𝑎𝐸) → 𝑎𝐸)
253, 4, 5, 6, 8, 10, 12, 24ltgseg 25291 . . . 4 ((𝜑𝑎𝐸) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
2623, 25r19.29vva 3062 . . 3 ((𝜑𝑎𝐸) → ¬ 𝑎 < 𝑎)
277ad8antr 772 . . . . . . . . . . 11 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝐺 ∈ TarskiG)
2827ad3antrrr 762 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝐺 ∈ TarskiG)
29 simp-9r 813 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑥𝑃)
30 simp-8r 811 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑦𝑃)
31 simp-6r 807 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑧𝑃)
32 simp-5r 805 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑡𝑃)
33 simpllr 795 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑢𝑃)
34 simplr 788 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑣𝑃)
35 simp-10r 815 . . . . . . . . . . . . . 14 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑎 < 𝑏𝑏 < 𝑐))
3635simpld 474 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 < 𝑏)
37 simp-7r 809 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 = (𝑥 𝑦))
38 simp-4r 803 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑏 = (𝑧 𝑡))
3936, 37, 383brtr3d 4614 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) < (𝑧 𝑡))
4011ad8antr 772 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → Fun )
4140ad3antrrr 762 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → Fun )
4215ad8antr 772 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑃 × 𝑃) ⊆ dom )
4342ad3antrrr 762 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑃 × 𝑃) ⊆ dom )
443, 4, 5, 6, 28, 10, 41, 14, 43, 29, 30ltgov 25292 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) < (𝑧 𝑡) ↔ ((𝑥 𝑦) (𝑧 𝑡) ∧ (𝑥 𝑦) ≠ (𝑧 𝑡))))
4539, 44mpbid 221 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) (𝑧 𝑡) ∧ (𝑥 𝑦) ≠ (𝑧 𝑡)))
4645simpld 474 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) (𝑧 𝑡))
4735simprd 478 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑏 < 𝑐)
48 simpr 476 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑐 = (𝑢 𝑣))
4947, 38, 483brtr3d 4614 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑧 𝑡) < (𝑢 𝑣))
503, 4, 5, 6, 28, 10, 41, 14, 43, 31, 32ltgov 25292 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑧 𝑡) < (𝑢 𝑣) ↔ ((𝑧 𝑡) (𝑢 𝑣) ∧ (𝑧 𝑡) ≠ (𝑢 𝑣))))
5149, 50mpbid 221 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑧 𝑡) (𝑢 𝑣) ∧ (𝑧 𝑡) ≠ (𝑢 𝑣)))
5251simpld 474 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑧 𝑡) (𝑢 𝑣))
533, 4, 5, 6, 28, 29, 30, 31, 32, 33, 34, 46, 52legtrd 25284 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) (𝑢 𝑣))
5428adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝐺 ∈ TarskiG)
5529adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑥𝑃)
5630adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑦𝑃)
5731adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑧𝑃)
5832adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → 𝑡𝑃)
5946adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) (𝑧 𝑡))
6052adantr 480 . . . . . . . . . . . . 13 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑧 𝑡) (𝑢 𝑣))
61 simpr 476 . . . . . . . . . . . . 13 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) = (𝑢 𝑣))
6260, 61breqtrrd 4611 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑧 𝑡) (𝑥 𝑦))
633, 4, 5, 6, 54, 55, 56, 57, 58, 59, 62legtri3 25285 . . . . . . . . . . 11 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) = (𝑧 𝑡))
6445simprd 478 . . . . . . . . . . . . 13 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑧 𝑡))
6564adantr 480 . . . . . . . . . . . 12 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑧 𝑡))
6665neneqd 2787 . . . . . . . . . . 11 (((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) ∧ (𝑥 𝑦) = (𝑢 𝑣)) → ¬ (𝑥 𝑦) = (𝑧 𝑡))
6763, 66pm2.65da 598 . . . . . . . . . 10 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ¬ (𝑥 𝑦) = (𝑢 𝑣))
6867neqned 2789 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) ≠ (𝑢 𝑣))
693, 4, 5, 6, 28, 10, 41, 14, 43, 29, 30ltgov 25292 . . . . . . . . 9 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → ((𝑥 𝑦) < (𝑢 𝑣) ↔ ((𝑥 𝑦) (𝑢 𝑣) ∧ (𝑥 𝑦) ≠ (𝑢 𝑣))))
7053, 68, 69mpbir2and 959 . . . . . . . 8 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → (𝑥 𝑦) < (𝑢 𝑣))
7170, 37, 483brtr4d 4615 . . . . . . 7 ((((((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑐 = (𝑢 𝑣)) → 𝑎 < 𝑐)
72 simp-5r 805 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎𝐸𝑏𝐸𝑐𝐸))
7372simp3d 1068 . . . . . . . . 9 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑐𝐸)
7473ad3antrrr 762 . . . . . . . 8 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑐𝐸)
753, 4, 5, 6, 27, 10, 40, 74ltgseg 25291 . . . . . . 7 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ∃𝑢𝑃𝑣𝑃 𝑐 = (𝑢 𝑣))
7671, 75r19.29vva 3062 . . . . . 6 (((((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑎 < 𝑐)
777ad5antr 766 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝐺 ∈ TarskiG)
7811ad5antr 766 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → Fun )
7972simp2d 1067 . . . . . . 7 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑏𝐸)
803, 4, 5, 6, 77, 10, 78, 79ltgseg 25291 . . . . . 6 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
8176, 80r19.29vva 3062 . . . . 5 ((((((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → 𝑎 < 𝑐)
827ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝐺 ∈ TarskiG)
8311ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → Fun )
84 simplr1 1096 . . . . . 6 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝑎𝐸)
853, 4, 5, 6, 82, 10, 83, 84ltgseg 25291 . . . . 5 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
8681, 85r19.29vva 3062 . . . 4 (((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) ∧ (𝑎 < 𝑏𝑏 < 𝑐)) → 𝑎 < 𝑐)
8786ex 449 . . 3 ((𝜑 ∧ (𝑎𝐸𝑏𝐸𝑐𝐸)) → ((𝑎 < 𝑏𝑏 < 𝑐) → 𝑎 < 𝑐))
8826, 87ispod 4967 . 2 (𝜑< Po 𝐸)
897ad8antr 772 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝐺 ∈ TarskiG)
90 simp-6r 807 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑥𝑃)
91 simp-5r 805 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑦𝑃)
92 simpllr 795 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑧𝑃)
93 simplr 788 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑡𝑃)
943, 4, 5, 6, 89, 90, 91, 92, 93legtrid 25286 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) (𝑧 𝑡) ∨ (𝑧 𝑡) (𝑥 𝑦)))
9511ad8antr 772 . . . . . . . . . 10 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → Fun )
9615ad8antr 772 . . . . . . . . . 10 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑃 × 𝑃) ⊆ dom )
973, 4, 5, 6, 89, 10, 95, 14, 96, 90, 91legov3 25293 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) (𝑧 𝑡) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡))))
983, 4, 5, 6, 89, 10, 95, 14, 96, 92, 93legov3 25293 . . . . . . . . 9 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑧 𝑡) (𝑥 𝑦) ↔ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
9997, 98orbi12d 742 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (((𝑥 𝑦) (𝑧 𝑡) ∨ (𝑧 𝑡) (𝑥 𝑦)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦)))))
10094, 99mpbid 221 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
101 eqcom 2617 . . . . . . . . . 10 ((𝑥 𝑦) = (𝑧 𝑡) ↔ (𝑧 𝑡) = (𝑥 𝑦))
102101orbi2i 540 . . . . . . . . 9 (((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦)))
103102orbi2i 540 . . . . . . . 8 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))))
104 df-3or 1032 . . . . . . . . 9 (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)) ∨ (𝑥 𝑦) = (𝑧 𝑡)))
105 3orcomb 1041 . . . . . . . . 9 (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
106 orordir 552 . . . . . . . . 9 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ↔ (((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))))
107104, 105, 1063bitr3ri 290 . . . . . . . 8 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑥 𝑦) = (𝑧 𝑡))) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
108103, 107bitr3i 265 . . . . . . 7 ((((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡)) ∨ ((𝑧 𝑡) < (𝑥 𝑦) ∨ (𝑧 𝑡) = (𝑥 𝑦))) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
109100, 108sylib 207 . . . . . 6 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦)))
110 simp-4r 803 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑎 = (𝑥 𝑦))
111 simpr 476 . . . . . . . 8 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → 𝑏 = (𝑧 𝑡))
112110, 111breq12d 4596 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 < 𝑏 ↔ (𝑥 𝑦) < (𝑧 𝑡)))
113110, 111eqeq12d 2625 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 = 𝑏 ↔ (𝑥 𝑦) = (𝑧 𝑡)))
114111, 110breq12d 4596 . . . . . . 7 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑏 < 𝑎 ↔ (𝑧 𝑡) < (𝑥 𝑦)))
115112, 113, 1143orbi123d 1390 . . . . . 6 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → ((𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎) ↔ ((𝑥 𝑦) < (𝑧 𝑡) ∨ (𝑥 𝑦) = (𝑧 𝑡) ∨ (𝑧 𝑡) < (𝑥 𝑦))))
116109, 115mpbird 246 . . . . 5 (((((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ 𝑏 = (𝑧 𝑡)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
1177ad2antrr 758 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → 𝐺 ∈ TarskiG)
11811ad2antrr 758 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → Fun )
119 simpr 476 . . . . . . 7 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → 𝑏𝐸)
1203, 4, 5, 6, 117, 10, 118, 119ltgseg 25291 . . . . . 6 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
121120ad3antrrr 762 . . . . 5 ((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → ∃𝑧𝑃𝑡𝑃 𝑏 = (𝑧 𝑡))
122116, 121r19.29vva 3062 . . . 4 ((((((𝜑𝑎𝐸) ∧ 𝑏𝐸) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑎 = (𝑥 𝑦)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
12325adantr 480 . . . 4 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → ∃𝑥𝑃𝑦𝑃 𝑎 = (𝑥 𝑦))
124122, 123r19.29vva 3062 . . 3 (((𝜑𝑎𝐸) ∧ 𝑏𝐸) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
125124anasss 677 . 2 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝑎 < 𝑏𝑎 = 𝑏𝑏 < 𝑎))
12688, 125issod 4989 1 (𝜑< Or 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  wss 3540   class class class wbr 4583   I cid 4948   Or wor 4958   × cxp 5036  dom cdm 5038  cres 5040  cima 5041  Fun wfun 5798  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  ≤Gcleg 25277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator