Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispod Structured version   Visualization version   GIF version

Theorem ispod 4967
 Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
Hypotheses
Ref Expression
ispod.1 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
ispod.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Assertion
Ref Expression
ispod (𝜑𝑅 Po 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem ispod
StepHypRef Expression
1 ispod.1 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
213ad2antr1 1219 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
3 ispod.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3jca 553 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
54ralrimivvva 2955 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 df-po 4959 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
75, 6sylibr 223 1 (𝜑𝑅 Po 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  ∀wral 2896   class class class wbr 4583   Po wpo 4957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-ral 2901  df-po 4959 This theorem is referenced by:  swopo  4969  pofun  4975  issoi  4990  wemappo  8337  pospo  16796  legso  25294  pocnv  30907
 Copyright terms: Public domain W3C validator