Step | Hyp | Ref
| Expression |
1 | | cleq1lem 13569 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (∅
⊆ ℤ ∧ (𝑌
⊆ ℤ ∧ 𝑌
∈ Fin)))) |
2 | | uneq2 3723 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑌 ∪ 𝑥) = (𝑌 ∪ ∅)) |
3 | | un0 3919 |
. . . . . . . . 9
⊢ (𝑌 ∪ ∅) = 𝑌 |
4 | 2, 3 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑌 ∪ 𝑥) = 𝑌) |
5 | 4 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(lcm‘(𝑌 ∪
𝑥)) =
(lcm‘𝑌)) |
6 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = ∅ →
(lcm‘𝑥) =
(lcm‘∅)) |
7 | | lcmf0 15185 |
. . . . . . . . 9
⊢
(lcm‘∅) = 1 |
8 | 6, 7 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
(lcm‘𝑥) =
1) |
9 | 8 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((lcm‘𝑌) lcm
(lcm‘𝑥)) =
((lcm‘𝑌) lcm
1)) |
10 | 5, 9 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑥 = ∅ →
((lcm‘(𝑌 ∪
𝑥)) =
((lcm‘𝑌) lcm
(lcm‘𝑥))
↔ (lcm‘𝑌)
= ((lcm‘𝑌) lcm
1))) |
11 | 1, 10 | imbi12d 333 |
. . . . 5
⊢ (𝑥 = ∅ → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑥)) =
((lcm‘𝑌) lcm
(lcm‘𝑥)))
↔ ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘𝑌) = ((lcm‘𝑌) lcm 1)))) |
12 | | cleq1lem 13569 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))) |
13 | | uneq2 3723 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑌 ∪ 𝑥) = (𝑌 ∪ 𝑦)) |
14 | 13 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (lcm‘(𝑌 ∪ 𝑥)) = (lcm‘(𝑌 ∪ 𝑦))) |
15 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (lcm‘𝑥) = (lcm‘𝑦)) |
16 | 15 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((lcm‘𝑌) lcm (lcm‘𝑥)) = ((lcm‘𝑌) lcm (lcm‘𝑦))) |
17 | 14, 16 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((lcm‘(𝑌 ∪ 𝑥)) = ((lcm‘𝑌) lcm (lcm‘𝑥)) ↔ (lcm‘(𝑌 ∪ 𝑦)) = ((lcm‘𝑌) lcm (lcm‘𝑦)))) |
18 | 12, 17 | imbi12d 333 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑥)) =
((lcm‘𝑌) lcm
(lcm‘𝑥)))
↔ ((𝑦 ⊆ ℤ
∧ (𝑌 ⊆ ℤ
∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))) |
19 | | cleq1lem 13569 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))) |
20 | | uneq2 3723 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑌 ∪ 𝑥) = (𝑌 ∪ (𝑦 ∪ {𝑧}))) |
21 | 20 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑌 ∪ 𝑥)) = (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧})))) |
22 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘𝑥) = (lcm‘(𝑦 ∪ {𝑧}))) |
23 | 22 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘𝑌) lcm (lcm‘𝑥)) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))) |
24 | 21, 23 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑌 ∪ 𝑥)) = ((lcm‘𝑌) lcm (lcm‘𝑥)) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))) |
25 | 19, 24 | imbi12d 333 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑥)) =
((lcm‘𝑌) lcm
(lcm‘𝑥)))
↔ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
(𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))) |
26 | | cleq1lem 13569 |
. . . . . 6
⊢ (𝑥 = 𝑍 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))) |
27 | | uneq2 3723 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → (𝑌 ∪ 𝑥) = (𝑌 ∪ 𝑍)) |
28 | 27 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → (lcm‘(𝑌 ∪ 𝑥)) = (lcm‘(𝑌 ∪ 𝑍))) |
29 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → (lcm‘𝑥) = (lcm‘𝑍)) |
30 | 29 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → ((lcm‘𝑌) lcm (lcm‘𝑥)) = ((lcm‘𝑌) lcm (lcm‘𝑍))) |
31 | 28, 30 | eqeq12d 2625 |
. . . . . 6
⊢ (𝑥 = 𝑍 → ((lcm‘(𝑌 ∪ 𝑥)) = ((lcm‘𝑌) lcm (lcm‘𝑥)) ↔ (lcm‘(𝑌 ∪ 𝑍)) = ((lcm‘𝑌) lcm (lcm‘𝑍)))) |
32 | 26, 31 | imbi12d 333 |
. . . . 5
⊢ (𝑥 = 𝑍 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑥)) =
((lcm‘𝑌) lcm
(lcm‘𝑥)))
↔ ((𝑍 ⊆ ℤ
∧ (𝑌 ⊆ ℤ
∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑍)) =
((lcm‘𝑌) lcm
(lcm‘𝑍))))) |
33 | | lcmfcl 15179 |
. . . . . . . . . 10
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(lcm‘𝑌) ∈
ℕ0) |
34 | 33 | nn0zd 11356 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(lcm‘𝑌) ∈
ℤ) |
35 | | lcm1 15161 |
. . . . . . . . 9
⊢
((lcm‘𝑌) ∈ ℤ →
((lcm‘𝑌) lcm
1) = (abs‘(lcm‘𝑌))) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
((lcm‘𝑌) lcm
1) = (abs‘(lcm‘𝑌))) |
37 | | nn0re 11178 |
. . . . . . . . . . 11
⊢
((lcm‘𝑌) ∈ ℕ0 →
(lcm‘𝑌) ∈
ℝ) |
38 | | nn0ge0 11195 |
. . . . . . . . . . 11
⊢
((lcm‘𝑌) ∈ ℕ0 → 0 ≤
(lcm‘𝑌)) |
39 | 37, 38 | jca 553 |
. . . . . . . . . 10
⊢
((lcm‘𝑌) ∈ ℕ0 →
((lcm‘𝑌)
∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
40 | 33, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
((lcm‘𝑌)
∈ ℝ ∧ 0 ≤ (lcm‘𝑌))) |
41 | | absid 13884 |
. . . . . . . . 9
⊢
(((lcm‘𝑌) ∈ ℝ ∧ 0 ≤
(lcm‘𝑌))
→ (abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(abs‘(lcm‘𝑌)) = (lcm‘𝑌)) |
43 | 36, 42 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
((lcm‘𝑌) lcm
1) = (lcm‘𝑌)) |
44 | 43 | adantl 481 |
. . . . . 6
⊢ ((∅
⊆ ℤ ∧ (𝑌
⊆ ℤ ∧ 𝑌
∈ Fin)) → ((lcm‘𝑌) lcm 1) = (lcm‘𝑌)) |
45 | 44 | eqcomd 2616 |
. . . . 5
⊢ ((∅
⊆ ℤ ∧ (𝑌
⊆ ℤ ∧ 𝑌
∈ Fin)) → (lcm‘𝑌) = ((lcm‘𝑌) lcm 1)) |
46 | | unass 3732 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∪ 𝑦) ∪ {𝑧}) = (𝑌 ∪ (𝑦 ∪ {𝑧})) |
47 | 46 | eqcomi 2619 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌 ∪ 𝑦) ∪ {𝑧}) |
48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌 ∪ 𝑦) ∪ {𝑧})) |
49 | 48 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘(𝑌 ∪
(𝑦 ∪ {𝑧}))) = (lcm‘((𝑌 ∪ 𝑦) ∪ {𝑧}))) |
50 | | simpl 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → 𝑌 ⊆
ℤ) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑌 ⊆ ℤ) |
52 | | unss 3749 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ) |
53 | | simpl 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆
ℤ) |
54 | 52, 53 | sylbir 224 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑦 ⊆ ℤ) |
56 | 51, 55 | unssd 3751 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑌 ∪ 𝑦) ⊆ ℤ) |
57 | 56 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ 𝑦) ⊆ ℤ) |
58 | | unfi 8112 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑌 ∪ 𝑦) ∈ Fin) |
59 | 58 | ex 449 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ∈ Fin → (𝑦 ∈ Fin → (𝑌 ∪ 𝑦) ∈ Fin)) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑦 ∈ Fin → (𝑌 ∪ 𝑦) ∈ Fin)) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑌 ∪ 𝑦) ∈ Fin)) |
62 | 61 | impcom 445 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ 𝑦) ∈ Fin) |
63 | | vex 3176 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
64 | 63 | snss 4259 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℤ ↔ {𝑧} ⊆
ℤ) |
65 | 64 | biimpri 217 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑧} ⊆ ℤ → 𝑧 ∈
ℤ) |
66 | 65 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑧 ∈
ℤ) |
67 | 52, 66 | sylbir 224 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑧 ∈ ℤ) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑧 ∈ ℤ) |
69 | 68 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → 𝑧 ∈ ℤ) |
70 | | lcmfunsn 15195 |
. . . . . . . . . . . 12
⊢ (((𝑌 ∪ 𝑦) ⊆ ℤ ∧ (𝑌 ∪ 𝑦) ∈ Fin ∧ 𝑧 ∈ ℤ) →
(lcm‘((𝑌 ∪
𝑦) ∪ {𝑧})) = ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧)) |
71 | 57, 62, 69, 70 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘((𝑌 ∪
𝑦) ∪ {𝑧})) = ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧)) |
72 | 49, 71 | eqtrd 2644 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘(𝑌 ∪
(𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧)) |
73 | 72 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ (lcm‘(𝑌
∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧)) |
74 | 54 | anim1i 590 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) |
75 | 74 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) |
76 | | id 22 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦)))
→ ((𝑦 ⊆ ℤ
∧ (𝑌 ⊆ ℤ
∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦)))) |
77 | 75, 76 | mpan9 485 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ (lcm‘(𝑌
∪ 𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))) |
78 | 77 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧) = (((lcm‘𝑌) lcm (lcm‘𝑦)) lcm 𝑧)) |
79 | 34 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘𝑌) ∈
ℤ) |
80 | 79 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘𝑌) ∈
ℤ) |
81 | 55 | anim2i 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ)) |
82 | 81 | ancomd 466 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) |
83 | | lcmfcl 15179 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℕ0) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘𝑦) ∈
ℕ0) |
85 | 84 | nn0zd 11356 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘𝑦) ∈
ℤ) |
86 | | lcmass 15165 |
. . . . . . . . . . . 12
⊢
(((lcm‘𝑌) ∈ ℤ ∧
(lcm‘𝑦) ∈
ℤ ∧ 𝑧 ∈
ℤ) → (((lcm‘𝑌) lcm (lcm‘𝑦)) lcm 𝑧) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧))) |
87 | 80, 85, 69, 86 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(((lcm‘𝑌) lcm
(lcm‘𝑦)) lcm
𝑧) =
((lcm‘𝑌) lcm
((lcm‘𝑦) lcm
𝑧))) |
88 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ (((lcm‘𝑌) lcm (lcm‘𝑦)) lcm 𝑧) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧))) |
89 | 78, 88 | eqtrd 2644 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ ((lcm‘(𝑌 ∪ 𝑦)) lcm 𝑧) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧))) |
90 | 73, 89 | eqtrd 2644 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ (lcm‘(𝑌
∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧))) |
91 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ⊆
ℤ) |
92 | | simpr 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin) |
93 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑧 ∈
ℤ) |
94 | 91, 92, 93 | 3jca 1235 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈
ℤ)) |
95 | 94 | ex 449 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈
ℤ))) |
96 | 52, 95 | sylbir 224 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))) |
97 | 96 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))) |
98 | 97 | impcom 445 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)) |
99 | | lcmfunsn 15195 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧)) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧)) |
101 | 100 | oveq2d 6565 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
((lcm‘𝑌) lcm
(lcm‘(𝑦 ∪
{𝑧}))) =
((lcm‘𝑌) lcm
((lcm‘𝑦) lcm
𝑧))) |
102 | 101 | eqeq2d 2620 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) →
((lcm‘(𝑌 ∪
(𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧)))) |
103 | 102 | adantr 480 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm ((lcm‘𝑦) lcm 𝑧)))) |
104 | 90, 103 | mpbird 246 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦))))
→ (lcm‘(𝑌
∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))) |
105 | 104 | exp31 628 |
. . . . . 6
⊢ (𝑦 ∈ Fin → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦)))
→ (lcm‘(𝑌
∪ (𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))) |
106 | 105 | com23 84 |
. . . . 5
⊢ (𝑦 ∈ Fin → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑦)) =
((lcm‘𝑌) lcm
(lcm‘𝑦)))
→ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
(𝑦 ∪ {𝑧}))) = ((lcm‘𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))) |
107 | 11, 18, 25, 32, 45, 106 | findcard2 8085 |
. . . 4
⊢ (𝑍 ∈ Fin → ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑍)) =
((lcm‘𝑌) lcm
(lcm‘𝑍)))) |
108 | 107 | expd 451 |
. . 3
⊢ (𝑍 ∈ Fin → (𝑍 ⊆ ℤ → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(lcm‘(𝑌 ∪
𝑍)) =
((lcm‘𝑌) lcm
(lcm‘𝑍))))) |
109 | 108 | impcom 445 |
. 2
⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(lcm‘(𝑌 ∪
𝑍)) =
((lcm‘𝑌) lcm
(lcm‘𝑍)))) |
110 | 109 | impcom 445 |
1
⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) →
(lcm‘(𝑌 ∪
𝑍)) =
((lcm‘𝑌) lcm
(lcm‘𝑍))) |