Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfun Structured version   Visualization version   GIF version

Theorem lcmfun 15196
 Description: The lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
lcmfun (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))

Proof of Theorem lcmfun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleq1lem 13569 . . . . . 6 (𝑥 = ∅ → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
2 uneq2 3723 . . . . . . . . 9 (𝑥 = ∅ → (𝑌𝑥) = (𝑌 ∪ ∅))
3 un0 3919 . . . . . . . . 9 (𝑌 ∪ ∅) = 𝑌
42, 3syl6eq 2660 . . . . . . . 8 (𝑥 = ∅ → (𝑌𝑥) = 𝑌)
54fveq2d 6107 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑌𝑥)) = (lcm𝑌))
6 fveq2 6103 . . . . . . . . 9 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
7 lcmf0 15185 . . . . . . . . 9 (lcm‘∅) = 1
86, 7syl6eq 2660 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = 1)
98oveq2d 6565 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm 1))
105, 9eqeq12d 2625 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm𝑌) = ((lcm𝑌) lcm 1)))
111, 10imbi12d 333 . . . . 5 (𝑥 = ∅ → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))))
12 cleq1lem 13569 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
13 uneq2 3723 . . . . . . . 8 (𝑥 = 𝑦 → (𝑌𝑥) = (𝑌𝑦))
1413fveq2d 6107 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑦)))
15 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1615oveq2d 6565 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑦)))
1714, 16eqeq12d 2625 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
1812, 17imbi12d 333 . . . . 5 (𝑥 = 𝑦 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))))
19 cleq1lem 13569 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
20 uneq2 3723 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑌𝑥) = (𝑌 ∪ (𝑦 ∪ {𝑧})))
2120fveq2d 6107 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))))
22 fveq2 6103 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
2322oveq2d 6565 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
2421, 23eqeq12d 2625 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧})))))
2519, 24imbi12d 333 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
26 cleq1lem 13569 . . . . . 6 (𝑥 = 𝑍 → ((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) ↔ (𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))))
27 uneq2 3723 . . . . . . . 8 (𝑥 = 𝑍 → (𝑌𝑥) = (𝑌𝑍))
2827fveq2d 6107 . . . . . . 7 (𝑥 = 𝑍 → (lcm‘(𝑌𝑥)) = (lcm‘(𝑌𝑍)))
29 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑍 → (lcm𝑥) = (lcm𝑍))
3029oveq2d 6565 . . . . . . 7 (𝑥 = 𝑍 → ((lcm𝑌) lcm (lcm𝑥)) = ((lcm𝑌) lcm (lcm𝑍)))
3128, 30eqeq12d 2625 . . . . . 6 (𝑥 = 𝑍 → ((lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥)) ↔ (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
3226, 31imbi12d 333 . . . . 5 (𝑥 = 𝑍 → (((𝑥 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑥)) = ((lcm𝑌) lcm (lcm𝑥))) ↔ ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
33 lcmfcl 15179 . . . . . . . . . 10 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℕ0)
3433nn0zd 11356 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℤ)
35 lcm1 15161 . . . . . . . . 9 ((lcm𝑌) ∈ ℤ → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
3634, 35syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (abs‘(lcm𝑌)))
37 nn0re 11178 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → (lcm𝑌) ∈ ℝ)
38 nn0ge0 11195 . . . . . . . . . . 11 ((lcm𝑌) ∈ ℕ0 → 0 ≤ (lcm𝑌))
3937, 38jca 553 . . . . . . . . . 10 ((lcm𝑌) ∈ ℕ0 → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
4033, 39syl 17 . . . . . . . . 9 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
41 absid 13884 . . . . . . . . 9 (((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)) → (abs‘(lcm𝑌)) = (lcm𝑌))
4240, 41syl 17 . . . . . . . 8 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm𝑌)) = (lcm𝑌))
4336, 42eqtrd 2644 . . . . . . 7 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4443adantl 481 . . . . . 6 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → ((lcm𝑌) lcm 1) = (lcm𝑌))
4544eqcomd 2616 . . . . 5 ((∅ ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) = ((lcm𝑌) lcm 1))
46 unass 3732 . . . . . . . . . . . . . 14 ((𝑌𝑦) ∪ {𝑧}) = (𝑌 ∪ (𝑦 ∪ {𝑧}))
4746eqcomi 2619 . . . . . . . . . . . . 13 (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧})
4847a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌 ∪ (𝑦 ∪ {𝑧})) = ((𝑌𝑦) ∪ {𝑧}))
4948fveq2d 6107 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = (lcm‘((𝑌𝑦) ∪ {𝑧})))
50 simpl 472 . . . . . . . . . . . . . . 15 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → 𝑌 ⊆ ℤ)
5150adantl 481 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑌 ⊆ ℤ)
52 unss 3749 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
53 simpl 472 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
5452, 53sylbir 224 . . . . . . . . . . . . . . 15 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
5554adantr 480 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑦 ⊆ ℤ)
5651, 55unssd 3751 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑌𝑦) ⊆ ℤ)
5756adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ⊆ ℤ)
58 unfi 8112 . . . . . . . . . . . . . . . 16 ((𝑌 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑌𝑦) ∈ Fin)
5958ex 449 . . . . . . . . . . . . . . 15 (𝑌 ∈ Fin → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6059adantl 481 . . . . . . . . . . . . . 14 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6160adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑌𝑦) ∈ Fin))
6261impcom 445 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑌𝑦) ∈ Fin)
63 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
6463snss 4259 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
6564biimpri 217 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ ℤ → 𝑧 ∈ ℤ)
6665adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑧 ∈ ℤ)
6752, 66sylbir 224 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑧 ∈ ℤ)
6867adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → 𝑧 ∈ ℤ)
6968adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → 𝑧 ∈ ℤ)
70 lcmfunsn 15195 . . . . . . . . . . . 12 (((𝑌𝑦) ⊆ ℤ ∧ (𝑌𝑦) ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7157, 62, 69, 70syl3anc 1318 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘((𝑌𝑦) ∪ {𝑧})) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7249, 71eqtrd 2644 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7372adantr 480 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm‘(𝑌𝑦)) lcm 𝑧))
7454anim1i 590 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
7574adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)))
76 id 22 . . . . . . . . . . . 12 (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))))
7775, 76mpan9 485 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))
7877oveq1d 6564 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧))
7934adantl 481 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm𝑌) ∈ ℤ)
8079adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑌) ∈ ℤ)
8155anim2i 591 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ))
8281ancomd 466 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin))
83 lcmfcl 15179 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℕ0)
8584nn0zd 11356 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm𝑦) ∈ ℤ)
86 lcmass 15165 . . . . . . . . . . . 12 (((lcm𝑌) ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8780, 85, 69, 86syl3anc 1318 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8887adantr 480 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (((lcm𝑌) lcm (lcm𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
8978, 88eqtrd 2644 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌𝑦)) lcm 𝑧) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9073, 89eqtrd 2644 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
9153adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
92 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
9366adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
9491, 92, 933jca 1235 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
9594ex 449 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9652, 95sylbir 224 . . . . . . . . . . . . . 14 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9796adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (𝑦 ∈ Fin → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ)))
9897impcom 445 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ))
99 lcmfunsn 15195 . . . . . . . . . . . 12 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
10098, 99syl 17 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧))
101100oveq2d 6565 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧)))
102101eqeq2d 2620 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
103102adantr 480 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → ((lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))) ↔ (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm ((lcm𝑦) lcm 𝑧))))
10490, 103mpbird 246 . . . . . . 7 (((𝑦 ∈ Fin ∧ ((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin))) ∧ ((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦)))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))
105104exp31 628 . . . . . 6 (𝑦 ∈ Fin → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
106105com23 84 . . . . 5 (𝑦 ∈ Fin → (((𝑦 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑦)) = ((lcm𝑌) lcm (lcm𝑦))) → (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌 ∪ (𝑦 ∪ {𝑧}))) = ((lcm𝑌) lcm (lcm‘(𝑦 ∪ {𝑧}))))))
10711, 18, 25, 32, 45, 106findcard2 8085 . . . 4 (𝑍 ∈ Fin → ((𝑍 ⊆ ℤ ∧ (𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
108107expd 451 . . 3 (𝑍 ∈ Fin → (𝑍 ⊆ ℤ → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))))
109108impcom 445 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍))))
110109impcom 445 1 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌𝑍)) = ((lcm𝑌) lcm (lcm𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  {csn 4125   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816   ≤ cle 9954  ℕ0cn0 11169  ℤcz 11254  abscabs 13822   lcm clcm 15139  lcmclcmf 15140 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-lcm 15141  df-lcmf 15142 This theorem is referenced by:  lcmfass  15197
 Copyright terms: Public domain W3C validator