Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2 Structured version   Visualization version   GIF version

Theorem findcard2 8085
 Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
Hypotheses
Ref Expression
findcard2.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2.5 𝜓
findcard2.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 7865 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4587 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 330 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1836 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4587 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 330 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1836 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4587 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 330 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1836 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 7905 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2.5 . . . . . . . . 9 𝜓
14 findcard2.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 247 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 206 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1713 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 nsuceq0 5722 . . . . . . . . . . . 12 suc 𝑣 ≠ ∅
19 breq1 4586 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑤 ≈ suc 𝑣 ↔ ∅ ≈ suc 𝑣))
2019anbi2d 736 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ↔ (𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣)))
21 peano1 6977 . . . . . . . . . . . . . . . . . 18 ∅ ∈ ω
22 peano2 6978 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 nneneq 8028 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ ω ∧ suc 𝑣 ∈ ω) → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2421, 22, 23sylancr 694 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2524biimpa 500 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → ∅ = suc 𝑣)
2625eqcomd 2616 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → suc 𝑣 = ∅)
2720, 26syl6bi 242 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 = ∅))
2827com12 32 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 = ∅ → suc 𝑣 = ∅))
2928necon3d 2803 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (suc 𝑣 ≠ ∅ → 𝑤 ≠ ∅))
3018, 29mpi 20 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ≠ ∅)
3130ex 449 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣𝑤 ≠ ∅))
32 n0 3890 . . . . . . . . . . . 12 (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧𝑤)
33 dif1en 8078 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣𝑧𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣)
34333expia 1259 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (𝑤 ∖ {𝑧}) ≈ 𝑣))
35 snssi 4280 . . . . . . . . . . . . . . . . . 18 (𝑧𝑤 → {𝑧} ⊆ 𝑤)
36 uncom 3719 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝑤 ∖ {𝑧}))
37 undif 4001 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ 𝑤 ↔ ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3837biimpi 205 . . . . . . . . . . . . . . . . . . 19 ({𝑧} ⊆ 𝑤 → ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3936, 38syl5eq 2656 . . . . . . . . . . . . . . . . . 18 ({𝑧} ⊆ 𝑤 → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
40 vex 3176 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
41 difexg 4735 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ V → (𝑤 ∖ {𝑧}) ∈ V)
4240, 41ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∖ {𝑧}) ∈ V
43 breq1 4586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
4443anbi2d 736 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
45 uneq1 3722 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
4645sbceq1d 3407 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
4746imbi2d 329 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
4844, 47imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
49 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
50 findcard2.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝜑𝜒))
5149, 50imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
5251spv 2248 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
53 rspe 2986 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
54 isfi 7865 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
5553, 54sylibr 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
56 pm2.27 41 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
58 findcard2.6 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ Fin → (𝜒𝜃))
5955, 57, 58sylsyld 59 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
6052, 59syl5 33 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
61 vex 3176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
62 snex 4835 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧} ∈ V
6361, 62unex 6854 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∪ {𝑧}) ∈ V
64 findcard2.3 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
6563, 64sbcie 3437 . . . . . . . . . . . . . . . . . . . . 21 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
6660, 65syl6ibr 241 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
6742, 48, 66vtocl 3232 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
68 dfsbcq 3404 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
6968imbi2d 329 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7067, 69syl5ib 233 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7135, 39, 703syl 18 . . . . . . . . . . . . . . . . 17 (𝑧𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7271expd 451 . . . . . . . . . . . . . . . 16 (𝑧𝑤 → (𝑣 ∈ ω → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7372com12 32 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7473adantr 480 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7534, 74mpdd 42 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7675exlimdv 1848 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧 𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7732, 76syl5bi 231 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7877ex 449 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7931, 78mpdd 42 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8079com23 84 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8180alrimdv 1844 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
82 nfv 1830 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
83 nfv 1830 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
84 nfsbc1v 3422 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
8583, 84nfim 1813 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
86 breq1 4586 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
87 sbceq1a 3413 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
8886, 87imbi12d 333 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8982, 85, 88cbval 2259 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
9081, 89syl6ibr 241 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
915, 8, 11, 17, 90finds1 6987 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
929119.21bi 2047 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
9392rexlimiv 3009 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
942, 93sylbi 206 . 2 (𝑥 ∈ Fin → 𝜑)
951, 94vtoclga 3245 1 (𝐴 ∈ Fin → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173  [wsbc 3402   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540  ∅c0 3874  {csn 4125   class class class wbr 4583  suc csuc 5642  ωcom 6957   ≈ cen 7838  Fincfn 7841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-fin 7845 This theorem is referenced by:  findcard2s  8086  frfi  8090  fnfi  8123  iunfi  8137  finsschain  8156  infdiffi  8438  fin1a2lem10  9114  wunfi  9422  rexfiuz  13935  modfsummod  14367  lcmfunsnlem  15192  lcmfun  15196  drsdirfi  16761  fiuncmp  21017  finiunmbl  23119  mbfresfi  32626  heibor1lem  32778  pclfinclN  34254
 Copyright terms: Public domain W3C validator