MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgz Structured version   Visualization version   GIF version

Theorem itgz 23353
Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itgz 𝐴0 d𝑥 = 0

Proof of Theorem itgz
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))
21dfitg 23342 . 2 𝐴0 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))))
3 ax-icn 9874 . . . . . . . . . . . . . . 15 i ∈ ℂ
4 elfznn0 12302 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
5 expcl 12740 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
63, 4, 5sylancr 694 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
7 elfzelz 12213 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
8 ine0 10344 . . . . . . . . . . . . . . . 16 i ≠ 0
9 expne0i 12754 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
103, 8, 9mp3an12 1406 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
117, 10syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → (i↑𝑘) ≠ 0)
126, 11div0d 10679 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → (0 / (i↑𝑘)) = 0)
1312fveq2d 6107 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
14 re0 13740 . . . . . . . . . . . 12 (ℜ‘0) = 0
1513, 14syl6eq 2660 . . . . . . . . . . 11 (𝑘 ∈ (0...3) → (ℜ‘(0 / (i↑𝑘))) = 0)
1615ifeq1d 4054 . . . . . . . . . 10 (𝑘 ∈ (0...3) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0))
17 ifid 4075 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), 0, 0) = 0
1816, 17syl6eq 2660 . . . . . . . . 9 (𝑘 ∈ (0...3) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0)
1918mpteq2dv 4673 . . . . . . . 8 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0))
20 fconstmpt 5085 . . . . . . . 8 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2119, 20syl6eqr 2662 . . . . . . 7 (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (ℝ × {0}))
2221fveq2d 6107 . . . . . 6 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0})))
23 itg20 23310 . . . . . 6 (∫2‘(ℝ × {0})) = 0
2422, 23syl6eq 2660 . . . . 5 (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
2524oveq2d 6565 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0))
266mul01d 10114 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0)
2725, 26eqtrd 2644 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = 0)
2827sumeq2i 14277 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0
29 fzfi 12633 . . . 4 (0...3) ∈ Fin
3029olci 405 . . 3 ((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin)
31 sumz 14300 . . 3 (((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0)
3230, 31ax-mp 5 . 2 Σ𝑘 ∈ (0...3)0 = 0
332, 28, 323eqtri 2636 1 𝐴0 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  ici 9817   · cmul 9820  cle 9954   / cdiv 10563  3c3 10948  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  cre 13685  Σcsu 14264  2citg2 23191  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-itg 23198  df-0p 23243
This theorem is referenced by:  itgge0  23383  itgfsum  23399
  Copyright terms: Public domain W3C validator