Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfitg Structured version   Visualization version   GIF version

Theorem dfitg 23342
 Description: Evaluate the class substitution in df-itg 23198. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
dfitg.1 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
Assertion
Ref Expression
dfitg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑇(𝑥,𝑘)

Proof of Theorem dfitg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-itg 23198 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 fvex 6113 . . . . . . . 8 (ℜ‘(𝐵 / (i↑𝑘))) ∈ V
3 id 22 . . . . . . . . . . . 12 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = (ℜ‘(𝐵 / (i↑𝑘))))
4 dfitg.1 . . . . . . . . . . . 12 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
53, 4syl6eqr 2662 . . . . . . . . . . 11 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = 𝑇)
65breq2d 4595 . . . . . . . . . 10 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ 𝑇))
76anbi2d 736 . . . . . . . . 9 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐴 ∧ 0 ≤ 𝑇)))
87, 5ifbieq1d 4059 . . . . . . . 8 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
92, 8csbie 3525 . . . . . . 7 (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)
109mpteq2i 4669 . . . . . 6 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
1110fveq2i 6106 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
1211oveq2i 6560 . . . 4 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
1312a1i 11 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))))
1413sumeq2i 14277 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
151, 14eqtri 2632 1 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ⦋csb 3499  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  ici 9817   · cmul 9820   ≤ cle 9954   / cdiv 10563  3c3 10948  ...cfz 12197  ↑cexp 12722  ℜcre 13685  Σcsu 14264  ∫2citg2 23191  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265  df-itg 23198 This theorem is referenced by:  itgeq1f  23344  nfitg  23347  cbvitg  23348  itgeq2  23350  itgresr  23351  itg0  23352  itgz  23353  itgcl  23356  itgcnlem  23362  itgss  23384  itgeqa  23386  itgsplit  23408  itgeq12dv  29715
 Copyright terms: Public domain W3C validator