Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg Structured version   Visualization version   GIF version

Theorem nfitg 23347
 Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
nfitg.1 𝑦𝐴
nfitg.2 𝑦𝐵
Assertion
Ref Expression
nfitg 𝑦𝐴𝐵 d𝑥
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23342 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nfcv 2751 . . 3 𝑦(0...3)
4 nfcv 2751 . . . 4 𝑦(i↑𝑘)
5 nfcv 2751 . . . 4 𝑦 ·
6 nfcv 2751 . . . . 5 𝑦2
7 nfcv 2751 . . . . . 6 𝑦
8 nfitg.1 . . . . . . . . 9 𝑦𝐴
98nfcri 2745 . . . . . . . 8 𝑦 𝑥𝐴
10 nfcv 2751 . . . . . . . . 9 𝑦0
11 nfcv 2751 . . . . . . . . 9 𝑦
12 nfcv 2751 . . . . . . . . . 10 𝑦
13 nfitg.2 . . . . . . . . . . 11 𝑦𝐵
14 nfcv 2751 . . . . . . . . . . 11 𝑦 /
1513, 14, 4nfov 6575 . . . . . . . . . 10 𝑦(𝐵 / (i↑𝑘))
1612, 15nffv 6110 . . . . . . . . 9 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
1710, 11, 16nfbr 4629 . . . . . . . 8 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
189, 17nfan 1816 . . . . . . 7 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1918, 16, 10nfif 4065 . . . . . 6 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
207, 19nfmpt 4674 . . . . 5 𝑦(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
216, 20nffv 6110 . . . 4 𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
224, 5, 21nfov 6575 . . 3 𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
233, 22nfsum 14269 . 2 𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
242, 23nfcxfr 2749 1 𝑦𝐴𝐵 d𝑥
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∈ wcel 1977  Ⅎwnfc 2738  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  ici 9817   · cmul 9820   ≤ cle 9954   / cdiv 10563  3c3 10948  ...cfz 12197  ↑cexp 12722  ℜcre 13685  Σcsu 14264  ∫2citg2 23191  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265  df-itg 23198 This theorem is referenced by:  itgfsum  23399  itgulm2  23967  fourierdlem112  39111
 Copyright terms: Public domain W3C validator